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A1 = Pin('B3',Pin.OUT_PP) 
A2 = Pin('B5',Pin.OUT_PP) 
PWMA = Pin('B8') # PB8 has TIM4, CH3 
tim = Timer(4, freq=1000) 
ch1 = tim.channel(3, Timer.PWM, pin=PWMA) 
ch1.pulse_width_percent(abs(self.NrA1-self.NrA2)) 

Code 1 STM32 Pin Configuration for Driver 

Two pins of STM32 are configured as output mode to control the corresponding “IN” pins of 
driver module. Another pin is set as PWM output to modulate “EN”, whose timer is enabled. 

3.3 Car Group: Gyroscope 

Section Author Ziyang Long  
(UESTC ID:2018190502030, UofG ID:2429503L) 
Yuchen Yao  
(UESTC ID:2018190602001, UofG ID:2429207Y) 

3.3.1 The Choice between MPU-6050 and JY901S 

There are two candidates in our choice of Gyroscope, namely MPU-6050 in Figure 16 and 
JY901S in Figure 17. 

 

Figure 16 MPU-6050 

The MPU-6050 devices combine a 3-axis gyroscope and a 3-axis accelerometer on the same 
silicon die, together with an onboard Digital Motion Processor, which processes complex 6-
axis motion fusion algorithms. For us, we mainly use three angular velocities ‘Gyro’ around 
three axis ‘x, y, z’, where the unit is °/s. After obtaining the angular velocity, a formula is 
necessary to change the angular velocity into angle, and the easiest way is: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 × 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 

The process of obtaining angle can be regarded as integral calculation when adding the angular 
velocity per unit time together. The code below presents the main logic of calculation angle. 
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sum=0 
from time import sleep 
while 1: 
 sum=sum+MPU.read.Gyro_z()*0.002 
 if(sum>=90 or sum<=-90): 
  print('Sum is ',sum) 
  sum=0 
  sleep(0.5) 
 sleep(0.001) 

Code 2 integral of angular velocity 

Although MPU6050 performs well (the excellent ability to capture the change of position) 
when rapidly rotating 90 degrees, it might lead to large error if the slight deflection occurs in 
unit time. On the condition that the small deflection occurs, the angular velocity will be 
unexpected small, and due to the limitation of MPU-6050’s sampling rate, (maximum value is 
8KHz), some unwanted omission may happen during the accumulation of the angular velocity 
per unit time  

def reset(self): 
        self._write_byte(MPU_PWR_MGMT1_REG, 0x00) # Configure the 
power management register openMPU6050 
        self._write_byte(MPU_GYRO_CFG_REG,  config_gyro_range<<3) # 
gyro sensor,?2000dps 
        self._write_byte(MPU_ACCEL_CFG_REG, config_accel_range<<3)#  
acceleration sensor ,?2g 
        self._write_byte(MPU_SAMPLE_RATE_REG,0x01)#The sampling 
frequency >512 
        self._write_byte(MPU_CFG_REG,0x00)#Set the digital low pass 
filter to the first mode and the output frequency is 8KHz 
        self._write_byte(MPU_INT_EN_REG,0X00) #Close all interrupts 
        self._write_byte(MPU_USER_CTRL_REG,0X00) #I2C main mode off 
        self._write_byte(MPU_FIFO_EN_REG,0X00) #close FIFO 
        self._write_byte(MPU_INTBP_CFG_REG,0X80) #INT Pin low level 
valid 
     
        buf = self._read_byte(MPU_DEVICE_ID_REG) 
        if buf != self._address: 
            print("MPU6050 not found!") 
        else: 
            pass 

Code 3 initialization in MPU6050 

Considering the defects of MPU6050 mentioned before, we decided to give up using MPU-
6050. 



3 Subsystem Design and Solutions 

 26 | 123 
TDPS 2021 TEAM 37 

 

Figure 17 JY901 

3.3.2 Two Communication Protocols: I2C and UART 

MPU-6050 access other devices through I2C bus, which is a synchronous serial communication 
protocol, so data is transferred bit by bit along a single wire. I2C in Figure 18 only uses two 
wires to transmit data between devices, including SDA (Serial Data)-the line for the master and 
slave to send and receive data and SCL (Serial Clock) – the line that carries the clock signal.  

 
Figure 18 I2C Principle 

With I2C, data is transferred in a message (Figure 19). The message is decomposed into data 
frames. Each message has an address frame that contains the binary address of the slave station 
and one or more data frames that contain the data being sent. The message also includes start 
and stop conditions, read/write bits, and ACK/NACK bits between each data frame. 

 

Figure 19 I2C message 
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Start condition: SDA line from high voltage level to SCL line from high to low voltage level. 

Stop condition: SDA line is switched from low voltage level to SCL line from low to high 
voltage level. 

Address frame: a unique 7-bit or 10-bit sequence for each slave device that identifies each 
slave when the master mother tongue wants to talk to it. 

Read/write bits: Specifies whether the master sends data to or requests data from slave devices 
(low voltage levels). 

ACK/NACK bit: Each frame in the message is followed by an acknowledgement/no 
acknowledgement bit. If the address frame or data frame is successfully received, it is returned 
from the receiving device to the sender's ACK bits 

We refer to the relative materials and find that there are two different methods to define I2C 
protocol in Micro Python language. ‘pyb’ and ’machine’ are two library functions with different 
grammar in define and use I2C protocol. We can write code either ‘from pyb import I2C’ or 
‘from machine import I2C’’. The figures below illustrate the detailed codes for the two methods 
respectively. 

For ‘pyb’: 

i2c=I2C(1,I2C.MASTER,baudrate=400000) 
men_write() 
mem_read() 

For ‘machine’: 

i2c=I2C(scl='PB6',sda='PB7',freq=400000) 
readfrom_mem() 
writeto() 

 

3.3.3 Data Processing 

To exploit the data generated by JY901S, we need to obtain them via UART communication 
and then process them to be their usable form. 

The initialization of UART execution in main is listed as follows: 

UART_Gyroscope = UART(2) 
UART_Gyroscope.init(38400, bits=8, parity=None, stop=1, 
timeout_char=100) 
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global z_angle 
count=10000 
UART_Gyroscope.irq(trigger = UART.IRQ_RXIDLE, handler = 
UART_Gyroscope_ISR) 
global original_angle 

Code 4 UART initialization with Gyroscope 

The global variables are defined for future applications. 

Data processing is finished in the interrupt service routine (ISR), where the function DueData 
is called. 

def UART_Gyroscope_ISR(t):  
    global turn_angle 
    global count 
    global signal 
    global command 
    global original_angle 
    global s_original_angle 
    global angle 
    global z_angle 
    global y_angle 
    msg_Gyroscope=UART_Gyroscope.read(UART_Gyroscope.any()) 
    angle = jy901.DueData(msg_Gyroscope) 
    z_angle=angle[0] 
    y_angle=angle[1] 
 
    if type(z_angle)==float:  
      if count==0: 
          original_angle=z_angle 
          s_original_angle=z_angle 
      count=count+1    
    return 

Code 5 Gyroscope ISR 

Here the condition if type(z_angle)==float: is invoked in case a null value is read. Again, 
global variables are defined for future application because an ISR can neither receive 
parameters nor return any. 

The module that processes data is listed as follows: 

from pyb import UART 
from time import sleep 
 



3 Subsystem Design and Solutions 

 29 | 123 
TDPS 2021 TEAM 37 

ACCData=[0.0]*8 
GYROData=[0.0]*8 
AngleData=[0.0]*8           
FrameState = 0            
Bytenum = 0              
CheckSum = 0                     
  
a = [0.0]*3 
w = [0.0]*3 
Angle = [0.0]*3 
 
 
def DueData(inputdata):    
    global  FrameState     
    global  Bytenum 
    global  CheckSum 
    global  a 
    global  w 
    global  Angle 
    for data in inputdata:   
        if FrameState==0:    
            if data==0x55 and Bytenum==0: #Start reading at 0x55 and 
increase bytenum 
                CheckSum=data 
                Bytenum=1 
                continue 
            elif data==0x51 and Bytenum==1: 
                CheckSum+=data 
                FrameState=1 
                Bytenum=2 
            elif data==0x52 and Bytenum==1:  
                CheckSum+=data 
                FrameState=2 
                Bytenum=2 
            elif data==0x53 and Bytenum==1: 
                CheckSum+=data 
                FrameState=3 
                Bytenum=2 
        elif FrameState==1: # acc     
             
            if Bytenum<10:            # read 8 bits 
                ACCData[Bytenum-2]=data  
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                CheckSum+=data 
                Bytenum+=1 
            else: 
                if data == (CheckSum&0xff):   
                    a = get_acc(ACCData) 
                CheckSum=0                   
                Bytenum=0 
                FrameState=0 
        elif FrameState==2: # gyro 
             
            if Bytenum<10: 
                GYROData[Bytenum-2]=data 
                CheckSum+=data 
                Bytenum+=1 
            else: 
                if data == (CheckSum&0xff): 
                    w = get_gyro(GYROData) 
                CheckSum=0 
                Bytenum=0 
                FrameState=0 
        elif FrameState==3: # angle 
             
            if Bytenum<10: 
                AngleData[Bytenum-2]=data 
                CheckSum+=data 
                Bytenum+=1 
            else: 
                if data == (CheckSum&0xff): 
                    Angle = get_angle(AngleData) 
                CheckSum=0 
                Bytenum=0 
                FrameState=0 
    return Angle 
 
 
def get_acc(datahex):   
    axl = datahex[0]                                         
    axh = datahex[1] 
    ayl = datahex[2]                                         
    ayh = datahex[3] 
    azl = datahex[4]                                         
    azh = datahex[5] 
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    k_acc = 16.0 
  
    acc_x = (axh << 8 | axl) / 32768.0 * k_acc 
    acc_y = (ayh << 8 | ayl) / 32768.0 * k_acc 
    acc_z = (azh << 8 | azl) / 32768.0 * k_acc 
    if acc_x >= k_acc: 
        acc_x -= 2 * k_acc 
    if acc_y >= k_acc: 
        acc_y -= 2 * k_acc 
    if acc_z >= k_acc: 
        acc_z-= 2 * k_acc 
     
    return acc_x,acc_y,acc_z 
  
  
def get_gyro(datahex):                                       
    wxl = datahex[0]                                         
    wxh = datahex[1] 
    wyl = datahex[2]                                         
    wyh = datahex[3] 
    wzl = datahex[4]                                         
    wzh = datahex[5] 
    k_gyro = 2000.0 
  
    gyro_x = (wxh << 8 | wxl) / 32768.0 * k_gyro 
    gyro_y = (wyh << 8 | wyl) / 32768.0 * k_gyro 
    gyro_z = (wzh << 8 | wzl) / 32768.0 * k_gyro 
    if gyro_x >= k_gyro: 
        gyro_x -= 2 * k_gyro 
    if gyro_y >= k_gyro: 
        gyro_y -= 2 * k_gyro 
    if gyro_z >=k_gyro: 
        gyro_z-= 2 * k_gyro 
    return gyro_x,gyro_y,gyro_z 
  
  
def get_angle(datahex):                                  
    rxl = datahex[0]                                         
    rxh = datahex[1] 
    ryl = datahex[2]                                         
    ryh = datahex[3] 
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    rzl = datahex[4]                                         
    rzh = datahex[5] 
    k_angle = 180.0 
  
    angle_x = (rxh << 8 | rxl) / 32768.0 * k_angle 
    angle_y = (ryh << 8 | ryl) / 32768.0 * k_angle 
    angle_z = (rzh << 8 | rzl) / 32768.0 * k_angle 
    if angle_x >= k_angle: 
        angle_x -= 2 * k_angle 
    if angle_y >= k_angle: 
        angle_y -= 2 * k_angle 
    if angle_z >=k_angle: 
        angle_z-= 2 * k_angle 
    return angle_z,angle_y 

Code 6 Module jy901 

The data is collected as byte variables inputdata, which is received as an input of function 
DueData. In DueData, the header of the input data is removed, and the remaining data is 
classified according to their starting bits, which represent their address in JY901S. Once it is 
determined whether it represents acceleration, gyroscope reading or angle, the data is passed 
to corresponding specified functions. In our project, y angle and z angle are required, so we 
extract them only. 

3.3.4 Comparison between 6-axis Scheme and 9-axis Scheme 

We need the gyroscope to decide whether the car has completed its turn and reached its target 
angle. At first, we chose for our jy901S the 9-axis gyro sensor consisting of 3 accelerometer 
axes, 3 gyroscope axes, and 3 magnetometer axes additional to its 6-axis counterpart. The 
magnetometer measures the magnetism of the earth, which automatically determines the zero 
position for z-angle. Accordingly, its 180 degree and -180 degree axes, which appear to be the 
same one, are also decided. This brings difficulty to our operation because we cannot set 0 by 
ourselves, and we might encounter the problem that the car should cross the -180/180 line, 
which gives rise to a jump in angle value. 

We solved the problem by setting a global variable count that counts the times of interrupt. 
Whenever we need to set a starting position for a turning, where the gyroscope is involved, we 
set count to 0, and record the current value read from the gyroscope. The difference between 
current axis and the original one is then calculated each time a new current position is read. 
The problem brought by the -180/180 intersection was solved through classification of 
scenarios. When the original angle is between -90° and -180° and the target angle is between 
90° and 180°, we have: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 360°, 
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and when the original angle is between 90° and 180° and the target angle is between -90° and 
-180°, we have: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 360°. 

In this way, our delta angle is guaranteed to be in the range of [0,360°].  

However, another problem is encountered when we began to test our algorithm on the car. The 
car is discovered to turn to the position that is quite different from our desired one. It is then 
found out that the angle read by the gyroscope is far from accurate. For instance, it read 270 
degrees when we turn it 180 degrees up. Still worse, the situation was not improved much after 
calibration. 

It is then discovered that when we switched to 6-axis scheme, that is, abandoning the 
magnetometer axes, the behavior of the gyroscope turned out surprisingly good. The reading 
was accurate, and the zero position can be set. However, as the zero-position problem has been 
solved in our algorithm, we decided not to change the it, which can also be used in 6-axis 
scheme. 

3.3.5 Applications 

3.3.5.1 Application1: turning on the spot 

An essential application involving JY901S is to assist the car to complete accurate turnings of 
arbitrarily given angles. To achieve this goal, we read the z angle at the very moment of 
instruction and record it as original_angle. Our target angle is calculated as 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 

where 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  comes from instruction from OpenMV. We then update z_angle each 
time a new one is read in ISR, and this is where the global variable z_angle comes into use. 
The difference delta is also updated each time z_angle changes. Note that in JY901S, 
delta>0 implies a counterclockwise turning and delta>0 implies a clockwise one. When the 
absolute value of delta is close enough to zero, it is regarded that the turning task is 
accomplished. A function turn is defined for the car to turn, making two wheels on one side 
to turn forward and two wheels on the other side to turn backward. The code for function turn 
is listed below: 

def turn(delta): 
    if delta>0:                        #clockwise 
        if delta>20: 
            Car.run_(0,40,40,0,40,0,0,40) 
            time.sleep(0.4) 
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        if delta<20: 
            Car.run_(0,30,30,0,30,0,0,30) 
            time.sleep(0.2) 
            Car.run_(0,0,0,0,0,0,0,0) 
            time.sleep(0.1) 
    if delta<0:                        #anticlockwise 
        if delta<-20: 
            Car.run_(40,0,0,40,0,40,40,0) 
            time.sleep(0.4) 
        if delta>-20: 
            Car.run_(30,0,0,30,0,30,30,0) 
            time.sleep(0.1) 
            Car.run_(0,0,0,0,0,0,0,0) 
            time.sleep(0.1) 

Code 7 Turning 

When the absolute value of delta is below 10°, the pwm input for the wheels is set to be lower 
than normal. This is to ensure fine adjustments to be made so that the car would stop at a precise 
angle. 

3.3.5.2 Application2: Send down-bridge signal to OpenMV 

When the car goes down from the bridge, OpenMV should be informed to get back to the state 
of tracing. This requires a signal from stm32, which is generated when JY901S senses a large 
y angle. The code for this coincides with the first application in terms of UART and ISR. The 
different part is listed as below: 

global y_angle 
#        print("y_angle:",y_angle) 
        if(y_angle>10): 
            enableCamera=1 
            print("sent enable camera.") 
            UART_OpenMV.write(str(enableCamera)) 

Code 8 Down-bridge signal 

3.3.5.3 Application3: dynamic self-adaption direction maintenance 

The third application of gyroscope is dynamic self-adaption direction maintenance in order to 
make car go straight. The key element of this task is to ensure the running route be an 
approximately straight line within tolerate drift angle as 0.1°. It is critical in both patio 1 and 
patio 2. 

The first method we tried was to use the speed feedback of the wheel to make the right and left 



3 Subsystem Design and Solutions 

 35 | 123 
TDPS 2021 TEAM 37 

sides of the wheel the same speed by setting the PID with reasonable parameters. In other words, 
it is to walk in a straight line. Based on this, we have done work on the encoder, converting the 
number of pulses received by the encoder into speed, and adding the PID algorithm to achieve 
the same speed on both sides. 

err = target - now #now:'count'  
pwm = pwm + self.kp*(err - last_err) + self.ki*err + self.kd*(err - 
last_err) 
if (pwm >= self.pwm_range):  
    pwm = self.pwm_range 
if (pwm <= -self.pwm_range): 
    pwm = -self.pwm_range 
last_err = err 
return pwm 

Code 9 PID algorithm 

However, the fact is not what we imagined. Even if we can make the rotation speed on both 
sides of the wheel exactly and quickly, due to the unevenness of the ground, the accidental 
idling will cause the deviation of the car. Especially on the cobblestone pavement of the second 
patio. 

 
Figure 20 Cobblestone pavement 

Gyroscope was then implemented to accurately perceive the angle of the current car and 
adjusted the output values of the PWM motors on both sides by analyzing the angle offset. The 
simplified version of the logic is as follows: if the angle is greater than 0.1, the car is tilted to 
the left, then we will increase the PWM output of the left wheel; if the angle is less than 0.1, 
the car is tilted to the right, then we will increase the PWM output of the right wheel.  
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Figure 21 Three functions 

The final solution: Since the change of PWM should be related to the change of angle, by 
comparing three functional relationships, including linear function, in function and exponential 
function, we find that the exponential function changes little when the angle is small, and the 
changes are obviously when the angle is large, this feature satisfies our idea of fine-tuning in 
small angles and drastically adjusting in large angles.  

 
Figure 22 The merit of exponential funtion 

In addition, we found that adding negative feedback (that is, the current PWM value is the last 
PWM value) and limiting the maximum PWM difference between the two wheels of the trolley 
will make the trolley adjust more quickly and the offset when the trolley goes straight will be 
smaller. The car has outstanding performance on the cobblestone road. 

 
Figure 23 negative feedback network 
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def releasing(): 
    i=6.3 #left 
    m=8.5 #right 
    flag=1 
    while flag: 
        i+=0.1 
        m+=0.1 
        ch.pulse_width_percent(i) 
        ch1.pulse_width_percent(m) 
        if m>=12: 
            m=12 
        if i>=11.8 and m>=12: 
            #print(i) 
            #print(m) 
            i=11.8 
            m=12 
            ch.pulse_width_percent(i) 
            ch1.pulse_width_percent(m) 
            time.sleep(2) 
            while i>=6.3 or m>=8.5: 
                if i>=6.3: 
                    i=i-0.1 
                if m>=8.5: 
                    m=m-0.1 
                print(i) 
                print(m) 
                time.sleep(0.3) 
                ch.pulse_width_percent(i) 
                ch1.pulse_width_percent(m) 
                if i<6.3 and m<8.5: 
                    flag=0 
 

Code 12 Robotic Arm 

3.6 Car group: Debugging (The Breakdown of STM32 

Boards) 

Section Author Ziyang Long  
(UESTC ID:2018190502030, UofG ID:2429503L) 

Technically Assisted by Yuchen Yao  
(UESTC ID:2018190602001, UofG ID:2429207Y) 
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Weizhe Zhao 
(UESTC ID:2018190606004, UofG ID: 2429361Z) 

 
Preface: 

As one invisible task, debugging was often neglected to demonstrate, however, bugs probably 
are the most troublesome thing in both software and hardware, especially in hardware. Most 
of the problems are proved to be simple afterwards, it took a lot of time to investigate. 

 
Figure 37 Boards’ graveyard 

3.6.1 Wrong Design in L298N PCB 

 
Figure 38 The first breakdown STM32 board 

The first two STM32’ broken was found when the power LED of STM32 board die out and 
cannot read the data from STM32 board when we use type C line to connect it with laptop. By 
checking other part of module, we focus on the problem in L298N. We design the initial L298N 
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PCB based on a reference file found on the internet. With only a sketchy glance of its design, 
we solder L298N boards, and we merely checked its power supply. 

  
Figure 39 initial wrong design L298N module 

By using Altium designer to scrutinize every detail of that PCB design in Figure 40, we found 
that the input pins were wrongly connect to the 5V power supply line, which is too obscure to 
notice. This mistake causes the reverse breakdown of STM32 board. 

 
Figure 40 short circuit in PCB design 
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3.6.2 The Drawback of Directly Connecting L298N Module 

 
Figure 41 locked rotor current 

Without any protection circuit or isolation methods, we found the STM32 will be broken by 
directly connecting to L298N module after using for a long time. Overcurrent and overvoltage 
to the Pin port are the main reason. When car’s rotor is kept stationary or in other words rotor 
is not spinning or rotating, it will generate locked rotor current, which basically drawn by the 
motor at its rated voltage. The maximum current for all pins of the STM32 is 150mA6, once 
the locked rotor current exceeds this value for a long period, the Pin port of STM32 will break. 
The rotor’s frequently back and forth switch will let the voltage applied at its terminal be rated 
voltage of motor. This voltage sometimes high enough to breakdown the diode after the Pin 
port or the causing the damage of STM32. 

3.6.3 Human Error-wrong Wire Connection 

The 3.3V Pin port and GND Pin port is very close in STM32. When using multimeter to 
check the output voltage, it is common to make them short out. The 5V and 3.3V’ misuse 
may breakdown the regulator inside the STM32 causing the damage due to negligence of 
team member. 
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3.6.4 Solution: Adding Optical Coupler Isolation between STM32 and 

L298N 

 
Figure 42 Circuit inside optocoupler 

The structure of the optocoupler (Figure 42) is equivalent to the light-emitting diode and 
photosensitive triode packaged together. The working principle is the process of electricity - 
light - electricity. The working current drives the light-emitting diode to emit light of a 
certain wavelength, which is received by the photosensitive triode to produce a certain 
photocurrent and output after amplification. The optocoupler isolation circuit realize target 
that no direct electrical connection between the isolated two parts of the circuit, especially 
between the low voltage control circuit-STM32 and the external high voltage circuit-L298N. 

 

Figure 43 Optocoupler module 

Snubber circuit is another potential method to avoid overvoltage, overcurrent and overheat. 

The inductor’s storage and release of energy will remarkably decrease 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. The switch 

on and switch off’s voltage/current trajectory will be shaped by snubber circuit. 
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4 System Integration, Results and Discussion 

4.1 Command Execution System (Car Group) 

4.1.1 System Integration 

4.1.1.1 Hardware 

 
Figure 64 The Display of Modules in Three Layers 

The main hardware components are illustrated in the above graph (Figure 64), including motor, 
hall element, L298N module, STM32 MCU, battery, HC-12 and claw. Note that one invisible 
module optical coupler module is between STM32 boards and L298N boards, it isolates the 
control circuit and drive circuit in electricity improving the safety and stability of MCU, which 
avoid the potential overvoltage or overcurrent in PWM value switching stage. The addition of 
the optical coupler module is because during our experimentation process, the high current 
overload easily breaks down STM32 boards. After several debugging steps and trials of 
changing boards and hardware, we find that the module is the optimal choice to entirely 
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eliminate the risk of STM malfunction. 

4.1.1.2 Software: Mode Realization 

The main function in stm32 is designed to contain several modes, each representing a different 
type of movement, for the convenience of external instructions. The modes are integrated in 
the same while loop according to their mode codes, which is illustrated in the figure below: 

 
Figure 65 Mode illustration 

The decision which mode to enter is made by OpenMV, whose messages specifies the mode at 
the first bit. Since the messages, named sum, are in the syntax of string, they are easily truncated, 
whereby instructions are extracted. For example, the command bit is obtained as: 

command_bit=int(sum[0:1]) 
Code 30 command_bit 
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a. Mode 0: Stop 
Mode 0 brakes the car, giving all pins on L298N high input. This enables the car to make 
an abrupt stop. 

i. # mode0: stop 
1. if command_bit==0: 
2. Car.run_(0,0,0,0,0,0,0,0) 

Code 31 Mode 0 

b. Mode 1: Receiving pwm control from OpenMV 
In this mode, the car receives all pwm controls from OpenMV, including pwm values and 
the angular velocity directions of each wheel. Basically, two wheels on the same side (i.e. 
left or right) are always given the same instructions for simplicity. Seven bits are needed 
in this mode, the first for mode switch and the others for car motion. Bits 2 to 4 give 
instructions to left wheels. A 2 on bit 2 indicates the left wheels turn forward and a 1 on 
this bit indicates backward movement. Bit 3 to 4 gives a pwm as a decimal figure with two 
digits, ranging from 0 to 99. The same rule is obeyed in bit 5 to 7 for right wheels. 

# mode1: receiving PWM from OpenMV 
    elif command_bit==1:  
        if len(sum)!=7: #if wrong pattern received, move forward 
            sum="1220220"  
        else: 
            left=int(sum[1:4]) 
            if left>200: 
                NlB1=left-200 
                NlB2=0 
                NlC1=left-200 
                NlC2=0 
            else: 
                NlB2=left-100 
                NlB1=0 
                NlC2=left-100 
                NlC1=0 
            right=int(sum[4:7]) 
            if right>200: 
                NrA1=right-200 
                NrA2=0 
                NrD1=right-200 
                NrD2=0 
            else: 
                NrD2=right-100 
                NrD1=0 
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                NrA2=right-100 
                NrA1=0 

            Car.run_(NrA1,NrA2,NlB1,NlB2,NlC1,NlC2,NrD1,NrD2) 
Code 32 Mode 1 

c. Mode 2: Turn on the spot 
In mode 2, the car complete turning instructions of arbitrary angle. This requires a 
command message of five bits, in which bit 2 implies whether the turning is clockwise or 
counterclockwise, and bit 3 to 5 gives the degree of turning. On entering mode 2, we set 
the global variable count to be zero, indicating an original angle is read and recorded from 
JY901S. While the turning is not completed, the program would stay in the while loop and 
new commands about modes are ignored, if and, during this period. 

# mode2:turning withour moving along 
    elif command_bit==2: 
        if len(sum)!=5: 
            sum="21000" #if wrong pattern, stay still 
        else: 
            if int(sum[1:2])==1: #counterclockwise 
                turn_angle=int(sum[2:5])     # >0: anticlockwise, 

<0: clockwise 
            if int(sum[1:2])==2: #clockwise 
                turn_angle=-int(sum[2:5]) 
            count=0 
            time.sleep(0.5) 
            turn_complete=0 
            target_angle=original_angle+turn_angle 
            if target_angle<=-180: 
                  target_angle=target_angle+360 
            if target_angle>180: 
                  target_angle=target_angle-360 
            while(turn_complete==0): 
              if z_angle<=-90 and z_angle>=-180 and 

target_angle<=180 and target_angle>=90: 
                  delta=z_angle-target_angle+360 
              elif z_angle>=90 and z_angle<=180 and 

target_angle>=-180 and target_angle<=-90: 
                  delta=z_angle-target_angle-360 
              else: 
                  delta=z_angle-target_angle 
                  if z_angle-target_angle>=180: 
                      delta=-(360-delta) 
                  if z_angle-target_angle<=-180:                      
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                      delta=-(360+delta) 
              # print(delta,z_angle) 
              if abs(delta)>=1: 
                  print(delta,z_angle)  
                  turn(delta) 
              if abs(delta)<1: 
                  # print(delta) 
                  turn_complete=1   
                  # Car.run_(0,0,0,0,0,0,0,0) 

                  sum="0" 
Code 33 Mode 2 

d. Mode 3: Turning while moving 
Instead of making an accurate turning in place, in this mode, the car may move on and 
meanwhile adjust its direction according to the delta angle returned from OpenMV, 
characterizing the difference between its current orientation and the target one. The 
message for this mode consists of five bits, with one command bit, one bit indicating the 
direction of angular velocity of turning and three bits telling the absolute value of the delta 
angle. 

# mode3: move while turning 
    elif command_bit==3: 
        if len(sum)!=5: 
            sum="31000" #if wrong pattern, move forward 
        else: 
            if int(sum[1:2])==1: 
                str_angle=int(sum[2:5]) 
            elif int(sum[1:2])==2: 
                str_angle=-int(sum[2:5]) 

            Car.straight(40,40,40,40,str_angle) 
Code 34 Mode 3 

The essence of this mode is the function it calls named straight. In this function, we first 
decide whether the angle is valid. If it is too large, we ignore the instruction because in this 
mode the car is supposed to move in a relatively straight manner. If the returned angle lies 
between an acceptable interval, we adjust the speed of wheels to cater for the degree 
expected. The adjustment is based on the angle received. If the absolute value of the angle 
is below ten degrees, we make fine adjustments. Otherwise, we adjust one side of wheels 
to turn backwards and the other two to turn forward. For example, if we want the car to 
turn left, we instruct the right wheels to turn forward and the left ones to turn backward. 
In this way, our car can adjust its direction according to the instructions from OpenMV. 

def straight(self, pwm_A, pwm_B, pwm_C, pwm_D, sum): 
       self.NrA1 = pwm_A #NrA1=NrD1(same speed for wheels on the 
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same side) 
       self.NlB1 = pwm_B 
       self.NlC1 = pwm_C 
       self.NrD1 = pwm_D 
       step = 10 
       wt=0.001 
       v_base=40 
       if(sum<70 and sum>-70): 
          # increment=(sum/abs(sum))*math.exp(sum/2.2) 
          increment=sum/2 
          # increment=1 
           
          if (sum<=10 and sum>=-10): 
              self.NrD1=v_base+increment 
              self.NrA1=v_base+increment 
              self.NlB1=v_base-increment 
              self.NlC1=v_base-increment 
              self.NrA2=0 
              self.NlB2=0 
              self.NlC2=0 
              self.NrD2=0 
          if sum>10: 
              self.NrA1=v_base+increment 
              self.NrD1=v_base+increment 
              self.NlC2=v_base+increment 
              self.NlB2=v_base+increment 
              self.NrA2=0 
              self.NrD2=0 
              self.NlC1=0 
              self.NlB1=0 
          if sum<-10: 
              self.NrA2=v_base-1.5*increment 
              self.NrD2=v_base-1.5*increment 
              self.NlC1=v_base-1.5*increment 
              self.NlB1=v_base-1.5*increment 
              self.NrA1=0 
              self.NrD1=0 
              self.NlC2=0 
              self.NlB2=0 
       if(sum>70 or sum<-70): 
          self.NrA2=0 
          self.NlB2=0 
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          self.NlC2=0 
          self.NrD2=0 
       Car_motion.run_(self, self.NrA1,self.NrA2, self.NlB1, 

self.NlB2, self.NlC1, self.NlC2, self.NrD1, self.NrD2) 
       if abs(sum)>10:     
          sleep(0.2) 
       else:               
          sleep(0.3) 
       print(sum,'FL=',self.NlB1-self.NlB2,'FR=',self.NrA1-

self.NrA2,'BL=',self.NlC1-self.NlC2,'BR=',self.NrD1-self.NrD2) 
       Car_motion.run_(self, 0, 0, 0, 0, 0, 0, 0, 0) 

       sleep(0.5) 
Code 35 Function straight 

e. Mode 4: Moving in a straight line on pebble ground 
In some parts in patio 2, the car is desired to move in a straight line. However, it is difficult 
for the car to keep direction on pebble ground, where its wheels may rotate without 
touching the ground, making it futile for control over wheel speeds. Thus, we designed a 
mode especially for this scenario, in which JY901S is invoked. To enter this mode, the 
message from OpenMV requires a mere command bit. 

# mode4: move along a stright line (patio 2) 
    elif command_bit==4 and isInitialize==0: 
        turn_angle=0 
        count=0 #set another original angle 
        time.sleep(0.5) 
        a=[31,30,30,31] 
        target_angle=s_original_angle+turn_angle 
        isInitialize=1 
        if target_angle<=-180: 
            target_angle=target_angle+360 
        if target_angle>180: 
            target_angle=target_angle-360 
     
    elif command_bit==4 and isInitialize==1: 
        if z_angle<=-90 and z_angle>=-180 and 

target_angle<=180 and target_angle>=90: 
            delta=z_angle-target_angle+360 
        elif z_angle>=90 and z_angle<=180 and target_angle>=-

180 and target_angle<=-90: 
            delta=z_angle-target_angle-360 
        else: 
            delta=z_angle-target_angle 
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            if z_angle-target_angle>=180: 
                delta=-(360-delta) 
            if z_angle-target_angle<=-180:                      
                delta=-(360+delta) 
        # print(delta,z_angle) 
  

        a=Car.stra2(a[0],a[1],a[2],a[3],delta)   
Code 36 Mode 4 

The function stra2 is called here to fulfill this task. This function adjusts the pwm value 
for wheels based on its last values. The code for it is listed below: 

def stra2(self, pwm_A, pwm_B, pwm_C, pwm_D, sum): 
       self.NrA1 = pwm_A #NrA1=NrD1(same speed for wheels on the 

same side) 
       self.NlB1 = pwm_B 
       self.NlC1 = pwm_C 
       self.NrD1 = pwm_D 
       self.NrA2=0 
       self.NlB2=0 
       self.NlC2=0 
       self.NrD2=0 
       yuzhi=0.1 
       increment=abs(sum) 
       rang=40#maximum differnece between speeds on two sides 
       base=30 
       if(sum<-yuzhi): 
              self.NrA1=self.NrA1+increment 
              self.NrD1=self.NrD1+increment 
              self.NlC1=self.NlC1-increment 
              self.NlB1=self.NlB1-increment 
              if((self.NrA1-self.NlB1)>rang): 
                 self.NlB1=base-(rang/2) 
                 self.NlC1=base-(rang/2) 
                 self.NrA1=base+(rang/2) 
                 self.NrD1=base+(rang/2) 
       if(sum>yuzhi): 
              self.NlB1=self.NlB1+increment 
              self.NlC1=self.NlC1+increment 
              self.NrA1=self.NrA1-increment 
              self.NrD1=self.NrD1-increment 
              if((self.NlB1-self.NrA1)>rang): 
                 self.NlB1=base+(rang/2) 
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                 self.NlC1=base+(rang/2) 
                 self.NrA1=base-(rang/2) 
                 self.NrD1=base-(rang/2) 
       if(sum<=yuzhi and sum>=-yuzhi): 
          pass 
       Car_motion.run_(self, self.NrA1,self.NrA2, self.NlB1, 

self.NlB2, self.NlC1, self.NlC2, self.NrD1, self.NrD2) 
       print(sum,'FL=',self.NlB1-self.NlB2,'FR=',self.NrA1-

self.NrA2,'BL=',self.NlC1-self.NlC2,'BR=',self.NrD1-self.NrD2) 
       sleep(0.1) 

       return (self.NrA1, self.NlB1, self.NlC1, self.NrD1) 
Code 37 Function stra2 

f. Mode 5: Moving in a straight line across the bridge 
When crossing the bridge, the car needs to follow a straight trace as well. However, our 
function stra2 is designed to be sensitive to small degree changes, and the car might 
behave like swinging from side to side at times, making it not suitable for the bridge of a 
limited width. Mode 5 is designed for this task and performs smooth motion. 

# mode5: move along a straight line (bridge) 
    elif command_bit==5 and isInitialize==0: 
        turn_angle=0 
        count=0 #set another original angle 
        time.sleep(0.5) 
        target_angle=s_original_angle+turn_angle 
        if target_angle<=-180: 
            target_angle=target_angle+360 
        if target_angle>180: 
            target_angle=target_angle-360 
        isInitialize=1 
        print(isInitialize) 
  
    elif command_bit==5 and isInitialize==1: 
        if z_angle<=-90 and z_angle>=-180 and 

target_angle<=180 and target_angle>=90: 
            delta=z_angle-target_angle+360 
        elif z_angle>=90 and z_angle<=180 and target_angle>=-

180 and target_angle<=-90: 
            delta=z_angle-target_angle-360 
        else: 
            delta=z_angle-target_angle 
            if z_angle-target_angle>=180: 
                delta=-(360-delta) 
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            if z_angle-target_angle<=-180:                      
                delta=-(360+delta)  
        a=Car.stra3(delta) 
        global y_angle 
#        print("y_angle:",y_angle) 
        if(y_angle>10): 
            enableCamera=1 
            print("sent enable camera.") 

            UART_OpenMV.write(str(enableCamera)) 
Code 38 Mode 5 

One of the main differences between mode 5 and mode 4 is that in mode 5, stm32 returns 
a message to turn on the camera and informs OpenMV that it is going down the bridge. In 
addition, another function, namely stra3 is called in this mode. This function is not 
iterative, ensuring a steady performance of the car. 

def stra3(self,delta): 
       self.NrA1 = 36 #NrA1=NrD1(same speed for wheels on the 

same side) 
       self.NlB1 = 35 
       self.NlC1 = 35 
       self.NrD1 = 36 
       step = 10 
       wt=0.001 
       v_base=35 
       sum=delta 
       if (sum==0): 
          pass 
       if(sum>0.1 or sum<-0.1): 
          # increment=(sum/abs(sum))*math.exp(sum/2.2) 
          increment=40*sum 
          self.NrD1=v_base-increment 
          self.NrA1=v_base-increment 
          self.NlB1=v_base+increment 
          self.NlC1=v_base+increment 
          # self.NrA2=0 
          # self.NlB2=0 
          # self.NlC2=0 
          # self.NrD2=0 
       else: 
          pass 
       self.NrA2=0 
       self.NlB2=0 
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       self.NlC2=0 
       self.NrD2=0 
       if(self.NrA1>50): 
          self.NrA1 = 50#NrA1=NrD1(same speed for wheels on 

the same side) 
          self.NrD1 = 50 
       if(self.NrA1<20): 
          self.NrA1 = 20#NrA1=NrD1(same speed for wheels on 

the same side) 
          self.NrD1 = 20 
       if(self.NlB1>50): 
          self.NlB1 = 50#NrA1=NrD1(same speed for wheels on 

the same side) 
          self.NlC1 = 50 
       if(self.NlB1<20): 
          self.NlB1 = 20#NrA1=NrD1(same speed for wheels on 

the same side) 
          self.NlC1 = 20 
       Car_motion.run_(self, self.NrA1,self.NrA2, self.NlB1, 

self.NlB2, self.NlC1, self.NlC2, self.NrD1, self.NrD2) 
       # sleep(0.2) 
       print(sum,'FL=',self.NlB1-self.NlB2,'FR=',self.NrA1-

self.NrA2,'BL=',self.NlC1-self.NlC2,'BR=',self.NrD1-self.NrD2) 
Code 39 Function stra3 

g. Mode 6: Operating the robotic arm 
If OpenMV returns a single ‘6’, the car enters the mode of robotic arm operation. This is 
illustrated in detail in the parts of robotic arm. The code for mode 6 is simple, since most 
work is finished in the function robotic_arm.releasing(). After the execution of this 
function, we automatically set the command bit to 0 so that the car would stop for a while 
and wait for new instructions. 

elif command_bit==6: 
        robotic_arm.releasing() 

        sum="0" 
Code 40 Mode 6 

4.1.2 Result and Discussion 

4.1.2.1 Patio1 

Tracing Response 
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How to make car go straight is an issue that have troubled us for a long time. The key factor of 
the task is to ensure the running route be an approximately straight line within tolerate drift 
angle as 0.1. It is critical in both patio1 and patio 2. 

The first solution we tried was to use the velocity feedback of the wheels to enable the right 
and left sides of the wheel the same speed by setting the PID with reasonable parameters. In 
other words, it is to walk in a straight line. Based on this, we converted the number of pulses 
received by the encoder into velocity as well as added the PID algorithm to achieve the same 
speed on both sides. 

However, the fact is not what we imagined. Even if we can make the rotation speed on both 
sides of the wheel exactly and quickly, due to the unevenness of the ground, the accidental 
idling will cause the deviation of the car. Especially on the cobblestone pavement of the second 
patio. 

 
Figure 66 Cobblestone pavement 

The second attempt was to use a gyroscope to accurately perceive the angle of the current car, 
and adjusted the output values of the PWM motors on both sides by analyzing the angle offset. 
The simplified version of the logic is as follows: if the angle is greater than 0.1, the car is tilted 
to the left, then we will increase the PWM output of the left wheel; if the angle is less than 0.1, 
the car is tilted to the right, then we will increase the PWM output of the right wheel. The first 
gyroscope we tried was MPU6050, (the code above, the part with the problem). However, due 
to the long time required to obtain the speed of this chip, we could not get the offset of the 
small angle in time, so we finally gave up this scheme. 

The final solution: Since the change of PWM should be related to the change of angle, by 
comparing three functional relationships, including linear function, ln function and exponential 
function, we found that the exponential function changes little when the angle is small, and the 
changes are obviously when the angle is large, This feature satisfies our idea of fine-tuning in 
small angles and drastically adjusting in large angles. In addition, we have tried two different 
logic methods. We found that adding negative feedback (that is, the current PWM value is the 
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last PWM value) and limiting the maximum PWM difference between the two wheels of the 
trolley will make the car adjust more quickly and the offset will be smaller when the car goes 
straight. The car has outstanding performance on the cobblestone road. 

import pyb 
import MPU6050 
 ''' 
     input parameters：current enc  
    output parameters：current pwm value 
''' 
 class PID: 
     def __init__(self, pwm_range, kp_A, ki_A, kd_A, kp_B, ki_B, 
kd_B, kp_C, ki_C, kd_C, kp_D, ki_D, kd_D): 
         #pwm_range: maximum pwm value 
         #A:B8-B7, front-right 
         #B:B6-B5, front-left 
         #C:B1-A6, rear-left 
         #D:B0-A7, rear-right 
         pwm_A = 0 #pwm_A = Nr1-Nr2 
         pwm_B = 0 
         pwm_C = 0 
         pwm_D = 0 
         err = 0  
        err_A = 0 
         err_B = 0 
         err_C = 0 
         err_D = 0 
         last_err_A = 0 
         last_err_B = 0 
         last_err_C = 0 
         last_err_D = 0 
         self.pwm_range = pwm_range 
         self.kp_A = kp_A 
         self.ki_A = ki_A 
         self.kd_A = kd_A 
         self.kp_B = kp_B 
         self.ki_B = ki_B 
         self.kd_B = kd_B 
         self.kp_C = kp_C 
         self.ki_C = ki_C 
         self.kd_C = kd_C 
         self.kp_D = kp_D 
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         self.ki_D = ki_D 
         self.kd_D = kd_D 
         self.pwm_A = 0 
         self.pwm_B = 0 
         self.pwm_C = 0 
         self.pwm_D = 0 
         self.err = err 
         self.err_A = err_A 
         self.err_B = err_B 
         self.err_C = err_C 
         self.err_D = err_D 
         self.last_err_A = last_err_A 
         self.last_err_B = last_err_B 
         self.last_err_C = last_err_C 
         self.last_err_D = last_err_D 
      
    # increment pid 
     def incremental_pid(self, now, target): 
         pwm += Kp[e(k) - e(k-1)] + Ki*e(k) + Kd[e(k) - 2e(k-1) + 
e(k-2)] 
  
        ''' 
         err = target - now #now:'count'  
        pwm = pwm + self.kp*(err - last_err) + self.ki*err + 
self.kd*(err - last_err) 
         if (pwm >= self.pwm_range): # limit the amplitude 
             pwm = self.pwm_range 
         if (pwm <= -self.pwm_range): 
             pwm = -self.pwm_range 
         last_err = err 
         return pwm 
  
    def pid_A(self, now, target): 
         self.err_A = target - now 
         self.pwm_A = self.pwm_A + self.kp_A * ( self.err_A - 
self.last_err_A )  + self.ki_A*self.err_A + self.kd_A*(self.err_A - 
self.last_err_A) 
         if (self.pwm_A >= self.pwm_range): 
             self.pwm_A = self.pwm_range 
         if (self.pwm_A <= -self.pwm_range): 
             self.pwm_A = -self.pwm_range 
         self.last_err_A = self.err_A 
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         # print("pwm_A", self.pwm_A) 
         return self.pwm_A 
  
    def pid_B(self, now, target): 
         self.err_B = target - now 
         self.pwm_B = self.pwm_B + self.kp_B*(self.err_B - 
self.last_err_B) + self.ki_B*self.err_B + self.kd_B*(self.err_B - 
self.last_err_B) 
         if (self.pwm_B >= self.pwm_range): 
             self.pwm_B = self.pwm_range 
         if (self.pwm_B <= -self.pwm_range): 
             self.pwm_B = -self.pwm_range 
         self.last_err_B = self.err_B 
         return self.pwm_B 
  
    def pid_C(self, now, target): 
         self.err_C = target - now 
         self.pwm_C = self.pwm_C + self.kp_C*(self.err_C - 
self.last_err_C) + self.ki_C*self.err_C + self.kd_C*(self.err_C - 
self.last_err_C) 
         if (self.pwm_C >= self.pwm_range): 
             self.pwm_C = self.pwm_range 
         if (self.pwm_C <= -self.pwm_range): 
             self.pwm_C = -self.pwm_range 
         self.last_err_C = self.err_C 
         return self.pwm_C 
  
    def pid_D(self, now, target): 
         self.err_D = target - now 
         self.pwm_D = self.pwm_D + self.kp_D*(self.err_D - 
self.last_err_D) + self.ki_D*self.err_D + self.kd_D*(self.err_D - 
self.last_err_D) 
         if (self.pwm_D >= self.pwm_range): 
             self.pwm_D = self.pwm_range 
         if (self.pwm_D <= -self.pwm_range): 
             self.pwm_D = -self.pwm_range 
         self.last_err_D = self.err_D 
         return self.pwm_D 

code 41 car dynamic self-adaption direction maintenance  

   In order to ensure that the car can patrol the route steadily, we have tried many methods. At 
first, we decided to let OpenMV transmit the angle between the central axis and the car to 
STM32 through inter-board communication (the distance between the trolley and the center 
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line is not transmitted), but the effect is not good: After a good number of trials, it is easy for 
the car to deviate from the route it needs to follow. 

Next, we tried two straight-line algorithms, the exponential function algorithm with negative 
feedback (mode 4) and the linear function algorithm (mode 5). When we call mode4, the 
probability of error is small when the car is patrolling the line, but the car twists and turns when 
it moves forward, which affects the speed of the car and wastes a lot of time. When we call 
mode 5, the car can complete a short distance perfectly, but when it needs to travel a long 
distance, it will deviate a lot from the central axis.  

After many trials by our team members, we have come up with a relatively rigorous solution: 
command OpenMV to transmit an 8-bit command, Bit1 is 1 means that we will use PWM Mode 
(continuous control by PID in OpenMV) Bit2-7 directly transfers the PWM value information 
to the four wheels, which has achieved good results. Since the exact PWM value makes our 
control of the wheels more precise, avoiding the situation that the car greatly deviates from the 
route. 

 
Figure 67 the car is patrolling the line while turning 

 
In-Position Turning 

In Patio 1, there are two points where each a 90 degree in-position turn is required. One is at 
the beacon before the bridge, the other one is right after crossing the bridge.  

At first point, once the beacon is detected, Open MV sends signal “22090” to STM32, ordering 
Mode 2 (in-position turning) and a clockwise 90 degree turn. Receiving the order, STM32 first 
gets an original angle from gyroscope and sets a target angle accordingly. In the turning process, 
gyroscope keeps reading current angle for STM32 to make comparison with the target one. We 
set the tolerance to be ±1 degree, i.e., the turning process is finished once |current - target|≤ 1. 
The second turn is carried out in a similar way. 

In field tests, we find that the car often turns over 90 degree and figure out the reason: the area 
around turning points is smooth enough for the car to make turns rapidly, so even though the 
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gyroscope is real-time and accurate, it still turns over easily due to inertia. To fix such fault, we 
set the car to turn at a lower speed when the turning is about to be complete (|current - target|≤ 
20). 

def turn(delta): 
    if delta>0:                        #clockwise 
        if delta>20: 
            Car.run_(0,50,50,0,50,0,0,50) 
            time.sleep(0.4) 
        if delta<20: 
            Car.run_(0,30,30,0,30,0,0,30) 
            time.sleep(0.2) 
            Car.run_(0,0,0,0,0,0,0,0) 
            time.sleep(0.1) 
    if delta<0:                        #anticlockwise 
        if delta<-20: 
            Car.run_(50,0,0,50,0,50,50,0) 
            time.sleep(0.4) 
        if delta>-20: 
            Car.run_(30,0,0,30,0,30,30,0) 
            time.sleep(0.1) 
            Car.run_(0,0,0,0,0,0,0,0) 
            time.sleep(0.1) 

Code 42 Improved Turning Program 

After adopting this solution, the in-position turning orders are always executed perfectly in 
Patio 1. 

Crossing Bridge 

In field tests, we find that there is no problem with climbing up the bridge or running down the 
slope, since the wheels of our car have good track adhesion and the 12-Volt motors are powerful 
enough. Therefore, we just focus on how to move straight when crossing the bridge. 

As there is no line for Open MV to carry out tracing, the car can only depend on the gyroscope 
to determine direction, i.e., Mode 4 and Mode 5 are to choose from.  

Although Mode 4 stands for being sensitive to deviation, it also means the car would response 
in a dramatic way, adding risks for the slopes. As a result, we choose Mode 5. In Mode 5, the 
car adjusts direction in a milder way than in Mode 4. Despite possible additive deviation, Mode 
5 shows great performance in a short distance, therefore is suitable to be applied in bridge 
crossing.  

Above all, field tests have witnessed the correctness of our choice. 
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Figure 68 Crossing Bridge 

4.1.2.2 Patio2 

A: Self-adaptive direction control mode 

In task 2, dynamic self-adaptive direction control mode is widely implemented in both the 
smooth tile surface and the rough cobblestone surface (Figure 69). It successfully makes the 
car go straight in two surfaces with quite different friction coefficients. We overcome the 
difficulties that the tire is easy to slip on tile surface and the wheel is likely to stuck in 
cobblestone. 

   
Figure 69 Running along a straight line in tile surface and cobblestone surface 

 
Compared with fixed PWM value adjustment per second, the dynamic self-adaptive direction 
control mode use both exponential functions related to deviation angle 

 
Adjustment=|deviation angle|×e|deviation angle|/2.2 
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and negative feedback to get better performance in going straight. The adjustment is relevant 
to the magnitude of disturbance, this algorithm first quantizes the influence of the uneven 
surface of the ground and the stall of the wheel into the deviation angle mapping to yaw axis 
(rotate on car’s up vector) 

Based on self-adaptive, the angle adjustment is divided into three stages due to the on-spot test 
experience, stable zone, tremor zone, and fluctuation zone. We set the different magnifications 
for adjustments in three zones. Moreover, to avoid the circumstance that the wheel stuck on the 
pebble, we amplify the PWM output value to the motor in pebble road. On the contrary, the car 
runs slowly in the tile surface. The car can automatically distinguish the different roads by 
judging the angle fluctuation in pitch axis (rotate on the cross product of the other camera’s up 
and direction vectors).  

B: Turing: 

Turning on the spot plays an indispensable role in performing the tasks 2, which has been 
repeatedly implemented and has great influence on the positioning of the car. It is essential 
for car to turn on the spot at a target angle precisely. To be specific, turning at an angle 
precisely is the foundation for the car to track the desired route, as the car may fail to 
approach the desired position without a correct initial direction. We have designed algorithm 
to cope with the turning problem.  

Our algorithm enables the car to turn at a precise angle with the tolerance of 1 degree and can 
revise the turning angle of the car automatically with the use of gyroscope.  

We defined delta as the difference angle between the target angle received from openmv and 
the current angle provided by the gyroscope, where both the target angle and current angle 
are ranging from -180 degree to 180 degree, which determines the turning direction and the 
turning angle. To be specific, if delta is greater than 0, the car rotates clockwise and rotates 
anticlockwise when delta less than 0. However, we faced with a challenge due to the range of 
delta, for instance, the problem occurs when target angle=179°, while current angle=-179°, 
the actual result we want is to turn clockwise for 2°, the result will be turning anticlockwise 
for 358°. In order to solve this problem, we adjust the range of delta by dividing the turning 
in to several conditions, for instance, when: 

90°≤target ange≤180°  and  −180°≤current angle≤−90° 
delta=current angle−target angle+360° 

 
With the algorithm, delta is adjusted into the range of -180° to 180°. And the car will 
repeatedly revise the angle until the delta angle is less than 1 degree. Moreover, the car will 
turn at a higher speed when delta angle is greater than 20°. 

def turn(delta): 
    if delta>0:                        #clockwise 
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        if delta>20: 
            Car.run_(0,50,50,0,50,0,0,50) 
            time.sleep(0.4) 
        if delta<20: 
            Car.run_(0,30,30,0,30,0,0,30) 
            time.sleep(0.2) 
            Car.run_(0,0,0,0,0,0,0,0) 
            time.sleep(0.1) 
    if delta<0:                        #anticlockwise 
        if delta<-20: 
            Car.run_(50,0,0,50,0,50,50,0) 
            time.sleep(0.4) 
        if delta>-20: 
            Car.run_(30,0,0,30,0,30,30,0) 
            time.sleep(0.1) 
            Car.run_(0,0,0,0,0,0,0,0) 
            time.sleep(0.1) 
            if int(sum[1:2])==1: #counterclockwise 
                turn_angle=int(sum[2:5])     # >0: anticlockwise, 
<0: clockwise 
            if int(sum[1:2])==2: #clockwise 
                turn_angle=-int(sum[2:5]) 
            # global z_angle 
            # UART_Gyroscope.irq(trigger = UART.IRQ_RXIDLE, handler 
= UART_Gyroscope_ISR) 
            # global original_angle 
            count=0 
            time.sleep(0.5) 
            turn_complete=0 
            target_angle=original_angle+turn_angle 
            if target_angle<=-180: 
                  target_angle=target_angle+360 
            if target_angle>180: 
                  target_angle=target_angle-360 
            while(turn_complete==0): 
              if z_angle<=-90 and z_angle>=-180 and 
target_angle<=180 and target_angle>=90: 
                  delta=z_angle-target_angle+360 
              elif z_angle>=90 and z_angle<=180 and target_angle>=-
180 and target_angle<=-90: 
                  delta=z_angle-target_angle-360 
              else: 
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                  delta=z_angle-target_angle 
                  if z_angle-target_angle>=180: 
                      delta=-(360-delta) 
                  if z_angle-target_angle<=-180:                     #
取小于 180的夹角 
                      delta=-(360+delta) 
              # print(delta,z_angle) 
              if abs(delta)>=1: 
                  print(delta,z_angle)  
                  turn(delta) 
              if abs(delta)<1: 
                  # print(delta) 
                  turn_complete=1   
                  # Car.run_(0,0,0,0,0,0,0,0) 
                  sum="0" 
                  # UART_Gyroscope.deinit       
  

  
C: Robotic Arm: 

The robotic arm is necessary in task 2 to comply the task of releasing fish food. A two-degree-
of-freedom robotic has been installed, which successfully performed the task in the last 
examination. The arm is designed to perform an action of throwing which can cast the fish food 
to the target position and then return to the original state in a relatively more sluggish speed. 
Besides, the size of the robotic arm is of great importance, the deepest diving down distance is 
up to 7cm, the largest arm span is up to 23cm, and the highest lifting distance is up to 15cm. 

         

Figure 70 Size of robotic arm 

The two joints of the arm are controlled by two servos (MG90S) respectively, where the 
rotation angle of servos can be adjusted by PWM value.  
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Figure 71 Working principle of servos 

It is noteworthy that the PWM range is 0.25 to 12.5 under the condition that the period of the 
servos is 20ms. Based on measurement and trials, we set the PWM values of the two servos 
(which are in responsible for the control of right and left arms) to about 12. Moreover, the 
robotic arm is controlled by the instructions from OpenMV. 

# main.py -- put your code here! 
from pyb import UART, Pin,Timer 
import time 
from time import sleep 
  
print("hello world") 
  
A0 = Pin('PA0') #control the left steering gear engine  
tim = Timer(2, freq=50) 
ch = tim.channel(1, Timer.PWM, pin=A0) 
  
B3 = Pin('PB3')# control the right steering gear engine  
tim1 = Timer(2, freq=50) 
ch1 = tim.channel(2, Timer.PWM, pin=B3) 
  
ch.pulse_width_percent(6.3) 
ch1.pulse_width_percent(8.5) 
  
def releasing(): 
    i=6.3 #左边 
    m=8.5 #右边 
    flag=1 
    while flag: 
        i+=0.1 
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        m+=0.1 
        ch.pulse_width_percent(i) 
        ch1.pulse_width_percent(m) 
        if m>=12: 
            m=12 
        if i>=11.8 and m>=12: 
            #print(i) 
            #print(m) 
            i=11.8 
            m=12 
            ch.pulse_width_percent(i) 
            ch1.pulse_width_percent(m) 
            time.sleep(2) 
            while i>=6.3 or m>=8.5: 
                if i>=6.3: 
                    i=i-0.1 
                if m>=8.5: 
                    m=m-0.1 
                print(i) 
                print(m) 
                time.sleep(0.3) 
                ch.pulse_width_percent(i) 
                ch1.pulse_width_percent(m) 
                if i<6.3 and m<8.5: 
                    flag=0 
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