
3 Subsystem Design and Solutions

 24 | 123
TDPS 2021 TEAM 37

A1 = Pin('B3',Pin.OUT_PP)
A2 = Pin('B5',Pin.OUT_PP)
PWMA = Pin('B8') # PB8 has TIM4, CH3
tim = Timer(4, freq=1000)
ch1 = tim.channel(3, Timer.PWM, pin=PWMA)
ch1.pulse_width_percent(abs(self.NrA1-self.NrA2))

Code 1 STM32 Pin Configuration for Driver

Two pins of STM32 are configured as output mode to control the corresponding “IN” pins of
driver module. Another pin is set as PWM output to modulate “EN”, whose timer is enabled.

3.3 Car Group: Gyroscope

Section Author Ziyang Long
(UESTC ID:2018190502030, UofG ID:2429503L)
Yuchen Yao
(UESTC ID:2018190602001, UofG ID:2429207Y)

3.3.1 The Choice between MPU-6050 and JY901S

There are two candidates in our choice of Gyroscope, namely MPU-6050 in Figure 16 and
JY901S in Figure 17.

Figure 16 MPU-6050

The MPU-6050 devices combine a 3-axis gyroscope and a 3-axis accelerometer on the same
silicon die, together with an onboard Digital Motion Processor, which processes complex 6-
axis motion fusion algorithms. For us, we mainly use three angular velocities ‘Gyro’ around
three axis ‘x, y, z’, where the unit is °/s. After obtaining the angular velocity, a formula is
necessary to change the angular velocity into angle, and the easiest way is:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 × 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖

The process of obtaining angle can be regarded as integral calculation when adding the angular
velocity per unit time together. The code below presents the main logic of calculation angle.

3 Subsystem Design and Solutions

 25 | 123
TDPS 2021 TEAM 37

sum=0
from time import sleep
while 1:
 sum=sum+MPU.read.Gyro_z()*0.002
 if(sum>=90 or sum<=-90):
 print('Sum is ',sum)
 sum=0
 sleep(0.5)
 sleep(0.001)

Code 2 integral of angular velocity

Although MPU6050 performs well (the excellent ability to capture the change of position)
when rapidly rotating 90 degrees, it might lead to large error if the slight deflection occurs in
unit time. On the condition that the small deflection occurs, the angular velocity will be
unexpected small, and due to the limitation of MPU-6050’s sampling rate, (maximum value is
8KHz), some unwanted omission may happen during the accumulation of the angular velocity
per unit time

def reset(self):
 self._write_byte(MPU_PWR_MGMT1_REG, 0x00) # Configure the
power management register openMPU6050
 self._write_byte(MPU_GYRO_CFG_REG, config_gyro_range<<3) #
gyro sensor,?2000dps
 self._write_byte(MPU_ACCEL_CFG_REG, config_accel_range<<3)#
acceleration sensor ,?2g
 self._write_byte(MPU_SAMPLE_RATE_REG,0x01)#The sampling
frequency >512
 self._write_byte(MPU_CFG_REG,0x00)#Set the digital low pass
filter to the first mode and the output frequency is 8KHz
 self._write_byte(MPU_INT_EN_REG,0X00) #Close all interrupts
 self._write_byte(MPU_USER_CTRL_REG,0X00) #I2C main mode off
 self._write_byte(MPU_FIFO_EN_REG,0X00) #close FIFO
 self._write_byte(MPU_INTBP_CFG_REG,0X80) #INT Pin low level
valid

 buf = self._read_byte(MPU_DEVICE_ID_REG)
 if buf != self._address:
 print("MPU6050 not found!")
 else:
 pass

Code 3 initialization in MPU6050

Considering the defects of MPU6050 mentioned before, we decided to give up using MPU-
6050.

3 Subsystem Design and Solutions

 26 | 123
TDPS 2021 TEAM 37

Figure 17 JY901

3.3.2 Two Communication Protocols: I2C and UART

MPU-6050 access other devices through I2C bus, which is a synchronous serial communication
protocol, so data is transferred bit by bit along a single wire. I2C in Figure 18 only uses two
wires to transmit data between devices, including SDA (Serial Data)-the line for the master and
slave to send and receive data and SCL (Serial Clock) – the line that carries the clock signal.

Figure 18 I2C Principle

With I2C, data is transferred in a message (Figure 19). The message is decomposed into data
frames. Each message has an address frame that contains the binary address of the slave station
and one or more data frames that contain the data being sent. The message also includes start
and stop conditions, read/write bits, and ACK/NACK bits between each data frame.

Figure 19 I2C message

3 Subsystem Design and Solutions

 27 | 123
TDPS 2021 TEAM 37

Start condition: SDA line from high voltage level to SCL line from high to low voltage level.

Stop condition: SDA line is switched from low voltage level to SCL line from low to high
voltage level.

Address frame: a unique 7-bit or 10-bit sequence for each slave device that identifies each
slave when the master mother tongue wants to talk to it.

Read/write bits: Specifies whether the master sends data to or requests data from slave devices
(low voltage levels).

ACK/NACK bit: Each frame in the message is followed by an acknowledgement/no
acknowledgement bit. If the address frame or data frame is successfully received, it is returned
from the receiving device to the sender's ACK bits

We refer to the relative materials and find that there are two different methods to define I2C
protocol in Micro Python language. ‘pyb’ and ’machine’ are two library functions with different
grammar in define and use I2C protocol. We can write code either ‘from pyb import I2C’ or
‘from machine import I2C’’. The figures below illustrate the detailed codes for the two methods
respectively.

For ‘pyb’:

i2c=I2C(1,I2C.MASTER,baudrate=400000)
men_write()
mem_read()

For ‘machine’:

i2c=I2C(scl='PB6',sda='PB7',freq=400000)
readfrom_mem()
writeto()

3.3.3 Data Processing

To exploit the data generated by JY901S, we need to obtain them via UART communication
and then process them to be their usable form.

The initialization of UART execution in main is listed as follows:

UART_Gyroscope = UART(2)
UART_Gyroscope.init(38400, bits=8, parity=None, stop=1,
timeout_char=100)

3 Subsystem Design and Solutions

 28 | 123
TDPS 2021 TEAM 37

global z_angle
count=10000
UART_Gyroscope.irq(trigger = UART.IRQ_RXIDLE, handler =
UART_Gyroscope_ISR)
global original_angle

Code 4 UART initialization with Gyroscope

The global variables are defined for future applications.

Data processing is finished in the interrupt service routine (ISR), where the function DueData
is called.

def UART_Gyroscope_ISR(t):
 global turn_angle
 global count
 global signal
 global command
 global original_angle
 global s_original_angle
 global angle
 global z_angle
 global y_angle
 msg_Gyroscope=UART_Gyroscope.read(UART_Gyroscope.any())
 angle = jy901.DueData(msg_Gyroscope)
 z_angle=angle[0]
 y_angle=angle[1]

 if type(z_angle)==float:
 if count==0:
 original_angle=z_angle
 s_original_angle=z_angle
 count=count+1
 return

Code 5 Gyroscope ISR

Here the condition if type(z_angle)==float: is invoked in case a null value is read. Again,
global variables are defined for future application because an ISR can neither receive
parameters nor return any.

The module that processes data is listed as follows:

from pyb import UART
from time import sleep

3 Subsystem Design and Solutions

 29 | 123
TDPS 2021 TEAM 37

ACCData=[0.0]*8
GYROData=[0.0]*8
AngleData=[0.0]*8
FrameState = 0
Bytenum = 0
CheckSum = 0

a = [0.0]*3
w = [0.0]*3
Angle = [0.0]*3

def DueData(inputdata):
 global FrameState
 global Bytenum
 global CheckSum
 global a
 global w
 global Angle
 for data in inputdata:
 if FrameState==0:
 if data==0x55 and Bytenum==0: #Start reading at 0x55 and
increase bytenum
 CheckSum=data
 Bytenum=1
 continue
 elif data==0x51 and Bytenum==1:
 CheckSum+=data
 FrameState=1
 Bytenum=2
 elif data==0x52 and Bytenum==1:
 CheckSum+=data
 FrameState=2
 Bytenum=2
 elif data==0x53 and Bytenum==1:
 CheckSum+=data
 FrameState=3
 Bytenum=2
 elif FrameState==1: # acc

 if Bytenum<10: # read 8 bits
 ACCData[Bytenum-2]=data

3 Subsystem Design and Solutions

 30 | 123
TDPS 2021 TEAM 37

 CheckSum+=data
 Bytenum+=1
 else:
 if data == (CheckSum&0xff):
 a = get_acc(ACCData)
 CheckSum=0
 Bytenum=0
 FrameState=0
 elif FrameState==2: # gyro

 if Bytenum<10:
 GYROData[Bytenum-2]=data
 CheckSum+=data
 Bytenum+=1
 else:
 if data == (CheckSum&0xff):
 w = get_gyro(GYROData)
 CheckSum=0
 Bytenum=0
 FrameState=0
 elif FrameState==3: # angle

 if Bytenum<10:
 AngleData[Bytenum-2]=data
 CheckSum+=data
 Bytenum+=1
 else:
 if data == (CheckSum&0xff):
 Angle = get_angle(AngleData)
 CheckSum=0
 Bytenum=0
 FrameState=0
 return Angle

def get_acc(datahex):
 axl = datahex[0]
 axh = datahex[1]
 ayl = datahex[2]
 ayh = datahex[3]
 azl = datahex[4]
 azh = datahex[5]

3 Subsystem Design and Solutions

 31 | 123
TDPS 2021 TEAM 37

 k_acc = 16.0

 acc_x = (axh << 8 | axl) / 32768.0 * k_acc
 acc_y = (ayh << 8 | ayl) / 32768.0 * k_acc
 acc_z = (azh << 8 | azl) / 32768.0 * k_acc
 if acc_x >= k_acc:
 acc_x -= 2 * k_acc
 if acc_y >= k_acc:
 acc_y -= 2 * k_acc
 if acc_z >= k_acc:
 acc_z-= 2 * k_acc

 return acc_x,acc_y,acc_z

def get_gyro(datahex):
 wxl = datahex[0]
 wxh = datahex[1]
 wyl = datahex[2]
 wyh = datahex[3]
 wzl = datahex[4]
 wzh = datahex[5]
 k_gyro = 2000.0

 gyro_x = (wxh << 8 | wxl) / 32768.0 * k_gyro
 gyro_y = (wyh << 8 | wyl) / 32768.0 * k_gyro
 gyro_z = (wzh << 8 | wzl) / 32768.0 * k_gyro
 if gyro_x >= k_gyro:
 gyro_x -= 2 * k_gyro
 if gyro_y >= k_gyro:
 gyro_y -= 2 * k_gyro
 if gyro_z >=k_gyro:
 gyro_z-= 2 * k_gyro
 return gyro_x,gyro_y,gyro_z

def get_angle(datahex):
 rxl = datahex[0]
 rxh = datahex[1]
 ryl = datahex[2]
 ryh = datahex[3]

3 Subsystem Design and Solutions

 32 | 123
TDPS 2021 TEAM 37

 rzl = datahex[4]
 rzh = datahex[5]
 k_angle = 180.0

 angle_x = (rxh << 8 | rxl) / 32768.0 * k_angle
 angle_y = (ryh << 8 | ryl) / 32768.0 * k_angle
 angle_z = (rzh << 8 | rzl) / 32768.0 * k_angle
 if angle_x >= k_angle:
 angle_x -= 2 * k_angle
 if angle_y >= k_angle:
 angle_y -= 2 * k_angle
 if angle_z >=k_angle:
 angle_z-= 2 * k_angle
 return angle_z,angle_y

Code 6 Module jy901

The data is collected as byte variables inputdata, which is received as an input of function
DueData. In DueData, the header of the input data is removed, and the remaining data is
classified according to their starting bits, which represent their address in JY901S. Once it is
determined whether it represents acceleration, gyroscope reading or angle, the data is passed
to corresponding specified functions. In our project, y angle and z angle are required, so we
extract them only.

3.3.4 Comparison between 6-axis Scheme and 9-axis Scheme

We need the gyroscope to decide whether the car has completed its turn and reached its target
angle. At first, we chose for our jy901S the 9-axis gyro sensor consisting of 3 accelerometer
axes, 3 gyroscope axes, and 3 magnetometer axes additional to its 6-axis counterpart. The
magnetometer measures the magnetism of the earth, which automatically determines the zero
position for z-angle. Accordingly, its 180 degree and -180 degree axes, which appear to be the
same one, are also decided. This brings difficulty to our operation because we cannot set 0 by
ourselves, and we might encounter the problem that the car should cross the -180/180 line,
which gives rise to a jump in angle value.

We solved the problem by setting a global variable count that counts the times of interrupt.
Whenever we need to set a starting position for a turning, where the gyroscope is involved, we
set count to 0, and record the current value read from the gyroscope. The difference between
current axis and the original one is then calculated each time a new current position is read.
The problem brought by the -180/180 intersection was solved through classification of
scenarios. When the original angle is between -90° and -180° and the target angle is between
90° and 180°, we have:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 360°,

3 Subsystem Design and Solutions

 33 | 123
TDPS 2021 TEAM 37

and when the original angle is between 90° and 180° and the target angle is between -90° and
-180°, we have:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 360°.

In this way, our delta angle is guaranteed to be in the range of [0,360°].

However, another problem is encountered when we began to test our algorithm on the car. The
car is discovered to turn to the position that is quite different from our desired one. It is then
found out that the angle read by the gyroscope is far from accurate. For instance, it read 270
degrees when we turn it 180 degrees up. Still worse, the situation was not improved much after
calibration.

It is then discovered that when we switched to 6-axis scheme, that is, abandoning the
magnetometer axes, the behavior of the gyroscope turned out surprisingly good. The reading
was accurate, and the zero position can be set. However, as the zero-position problem has been
solved in our algorithm, we decided not to change the it, which can also be used in 6-axis
scheme.

3.3.5 Applications

3.3.5.1 Application1: turning on the spot

An essential application involving JY901S is to assist the car to complete accurate turnings of
arbitrarily given angles. To achieve this goal, we read the z angle at the very moment of
instruction and record it as original_angle. Our target angle is calculated as

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,

where 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 comes from instruction from OpenMV. We then update z_angle each
time a new one is read in ISR, and this is where the global variable z_angle comes into use.
The difference delta is also updated each time z_angle changes. Note that in JY901S,
delta>0 implies a counterclockwise turning and delta>0 implies a clockwise one. When the
absolute value of delta is close enough to zero, it is regarded that the turning task is
accomplished. A function turn is defined for the car to turn, making two wheels on one side
to turn forward and two wheels on the other side to turn backward. The code for function turn
is listed below:

def turn(delta):
 if delta>0: #clockwise
 if delta>20:
 Car.run_(0,40,40,0,40,0,0,40)
 time.sleep(0.4)

3 Subsystem Design and Solutions

 34 | 123
TDPS 2021 TEAM 37

 if delta<20:
 Car.run_(0,30,30,0,30,0,0,30)
 time.sleep(0.2)
 Car.run_(0,0,0,0,0,0,0,0)
 time.sleep(0.1)
 if delta<0: #anticlockwise
 if delta<-20:
 Car.run_(40,0,0,40,0,40,40,0)
 time.sleep(0.4)
 if delta>-20:
 Car.run_(30,0,0,30,0,30,30,0)
 time.sleep(0.1)
 Car.run_(0,0,0,0,0,0,0,0)
 time.sleep(0.1)

Code 7 Turning

When the absolute value of delta is below 10°, the pwm input for the wheels is set to be lower
than normal. This is to ensure fine adjustments to be made so that the car would stop at a precise
angle.

3.3.5.2 Application2: Send down-bridge signal to OpenMV

When the car goes down from the bridge, OpenMV should be informed to get back to the state
of tracing. This requires a signal from stm32, which is generated when JY901S senses a large
y angle. The code for this coincides with the first application in terms of UART and ISR. The
different part is listed as below:

global y_angle
print("y_angle:",y_angle)
 if(y_angle>10):
 enableCamera=1
 print("sent enable camera.")
 UART_OpenMV.write(str(enableCamera))

Code 8 Down-bridge signal

3.3.5.3 Application3: dynamic self-adaption direction maintenance

The third application of gyroscope is dynamic self-adaption direction maintenance in order to
make car go straight. The key element of this task is to ensure the running route be an
approximately straight line within tolerate drift angle as 0.1°. It is critical in both patio 1 and
patio 2.

The first method we tried was to use the speed feedback of the wheel to make the right and left

3 Subsystem Design and Solutions

 35 | 123
TDPS 2021 TEAM 37

sides of the wheel the same speed by setting the PID with reasonable parameters. In other words,
it is to walk in a straight line. Based on this, we have done work on the encoder, converting the
number of pulses received by the encoder into speed, and adding the PID algorithm to achieve
the same speed on both sides.

err = target - now #now:'count'
pwm = pwm + self.kp*(err - last_err) + self.ki*err + self.kd*(err -
last_err)
if (pwm >= self.pwm_range):
 pwm = self.pwm_range
if (pwm <= -self.pwm_range):
 pwm = -self.pwm_range
last_err = err
return pwm

Code 9 PID algorithm

However, the fact is not what we imagined. Even if we can make the rotation speed on both
sides of the wheel exactly and quickly, due to the unevenness of the ground, the accidental
idling will cause the deviation of the car. Especially on the cobblestone pavement of the second
patio.

Figure 20 Cobblestone pavement

Gyroscope was then implemented to accurately perceive the angle of the current car and
adjusted the output values of the PWM motors on both sides by analyzing the angle offset. The
simplified version of the logic is as follows: if the angle is greater than 0.1, the car is tilted to
the left, then we will increase the PWM output of the left wheel; if the angle is less than 0.1,
the car is tilted to the right, then we will increase the PWM output of the right wheel.

3 Subsystem Design and Solutions

 36 | 123
TDPS 2021 TEAM 37

Figure 21 Three functions

The final solution: Since the change of PWM should be related to the change of angle, by
comparing three functional relationships, including linear function, in function and exponential
function, we find that the exponential function changes little when the angle is small, and the
changes are obviously when the angle is large, this feature satisfies our idea of fine-tuning in
small angles and drastically adjusting in large angles.

Figure 22 The merit of exponential funtion

In addition, we found that adding negative feedback (that is, the current PWM value is the last
PWM value) and limiting the maximum PWM difference between the two wheels of the trolley
will make the trolley adjust more quickly and the offset when the trolley goes straight will be
smaller. The car has outstanding performance on the cobblestone road.

Figure 23 negative feedback network

3 Subsystem Design and Solutions

 47 | 123
TDPS 2021 TEAM 37

def releasing():
 i=6.3 #left
 m=8.5 #right
 flag=1
 while flag:
 i+=0.1
 m+=0.1
 ch.pulse_width_percent(i)
 ch1.pulse_width_percent(m)
 if m>=12:
 m=12
 if i>=11.8 and m>=12:
 #print(i)
 #print(m)
 i=11.8
 m=12
 ch.pulse_width_percent(i)
 ch1.pulse_width_percent(m)
 time.sleep(2)
 while i>=6.3 or m>=8.5:
 if i>=6.3:
 i=i-0.1
 if m>=8.5:
 m=m-0.1
 print(i)
 print(m)
 time.sleep(0.3)
 ch.pulse_width_percent(i)
 ch1.pulse_width_percent(m)
 if i<6.3 and m<8.5:
 flag=0

Code 12 Robotic Arm

3.6 Car group: Debugging (The Breakdown of STM32

Boards)

Section Author Ziyang Long
(UESTC ID:2018190502030, UofG ID:2429503L)

Technically Assisted by Yuchen Yao
(UESTC ID:2018190602001, UofG ID:2429207Y)

3 Subsystem Design and Solutions

 48 | 123
TDPS 2021 TEAM 37

Weizhe Zhao
(UESTC ID:2018190606004, UofG ID: 2429361Z)

Preface:

As one invisible task, debugging was often neglected to demonstrate, however, bugs probably
are the most troublesome thing in both software and hardware, especially in hardware. Most
of the problems are proved to be simple afterwards, it took a lot of time to investigate.

Figure 37 Boards’ graveyard

3.6.1 Wrong Design in L298N PCB

Figure 38 The first breakdown STM32 board

The first two STM32’ broken was found when the power LED of STM32 board die out and
cannot read the data from STM32 board when we use type C line to connect it with laptop. By
checking other part of module, we focus on the problem in L298N. We design the initial L298N

3 Subsystem Design and Solutions

 49 | 123
TDPS 2021 TEAM 37

PCB based on a reference file found on the internet. With only a sketchy glance of its design,
we solder L298N boards, and we merely checked its power supply.

Figure 39 initial wrong design L298N module

By using Altium designer to scrutinize every detail of that PCB design in Figure 40, we found
that the input pins were wrongly connect to the 5V power supply line, which is too obscure to
notice. This mistake causes the reverse breakdown of STM32 board.

Figure 40 short circuit in PCB design

3 Subsystem Design and Solutions

 50 | 123
TDPS 2021 TEAM 37

3.6.2 The Drawback of Directly Connecting L298N Module

Figure 41 locked rotor current

Without any protection circuit or isolation methods, we found the STM32 will be broken by
directly connecting to L298N module after using for a long time. Overcurrent and overvoltage
to the Pin port are the main reason. When car’s rotor is kept stationary or in other words rotor
is not spinning or rotating, it will generate locked rotor current, which basically drawn by the
motor at its rated voltage. The maximum current for all pins of the STM32 is 150mA6, once
the locked rotor current exceeds this value for a long period, the Pin port of STM32 will break.
The rotor’s frequently back and forth switch will let the voltage applied at its terminal be rated
voltage of motor. This voltage sometimes high enough to breakdown the diode after the Pin
port or the causing the damage of STM32.

3.6.3 Human Error-wrong Wire Connection

The 3.3V Pin port and GND Pin port is very close in STM32. When using multimeter to
check the output voltage, it is common to make them short out. The 5V and 3.3V’ misuse
may breakdown the regulator inside the STM32 causing the damage due to negligence of
team member.

3 Subsystem Design and Solutions

 51 | 123
TDPS 2021 TEAM 37

3.6.4 Solution: Adding Optical Coupler Isolation between STM32 and

L298N

Figure 42 Circuit inside optocoupler

The structure of the optocoupler (Figure 42) is equivalent to the light-emitting diode and
photosensitive triode packaged together. The working principle is the process of electricity -
light - electricity. The working current drives the light-emitting diode to emit light of a
certain wavelength, which is received by the photosensitive triode to produce a certain
photocurrent and output after amplification. The optocoupler isolation circuit realize target
that no direct electrical connection between the isolated two parts of the circuit, especially
between the low voltage control circuit-STM32 and the external high voltage circuit-L298N.

Figure 43 Optocoupler module

Snubber circuit is another potential method to avoid overvoltage, overcurrent and overheat.

The inductor’s storage and release of energy will remarkably decrease 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. The switch

on and switch off’s voltage/current trajectory will be shaped by snubber circuit.

4 System Integration, Results and Discussion

 80 | 123
TDPS 2021 TEAM 37

4 System Integration, Results and Discussion

4.1 Command Execution System (Car Group)

4.1.1 System Integration

4.1.1.1 Hardware

Figure 64 The Display of Modules in Three Layers

The main hardware components are illustrated in the above graph (Figure 64), including motor,
hall element, L298N module, STM32 MCU, battery, HC-12 and claw. Note that one invisible
module optical coupler module is between STM32 boards and L298N boards, it isolates the
control circuit and drive circuit in electricity improving the safety and stability of MCU, which
avoid the potential overvoltage or overcurrent in PWM value switching stage. The addition of
the optical coupler module is because during our experimentation process, the high current
overload easily breaks down STM32 boards. After several debugging steps and trials of
changing boards and hardware, we find that the module is the optimal choice to entirely

4 System Integration, Results and Discussion

 81 | 123
TDPS 2021 TEAM 37

eliminate the risk of STM malfunction.

4.1.1.2 Software: Mode Realization

The main function in stm32 is designed to contain several modes, each representing a different
type of movement, for the convenience of external instructions. The modes are integrated in
the same while loop according to their mode codes, which is illustrated in the figure below:

Figure 65 Mode illustration

The decision which mode to enter is made by OpenMV, whose messages specifies the mode at
the first bit. Since the messages, named sum, are in the syntax of string, they are easily truncated,
whereby instructions are extracted. For example, the command bit is obtained as:

command_bit=int(sum[0:1])
Code 30 command_bit

4 System Integration, Results and Discussion

 82 | 123
TDPS 2021 TEAM 37

a. Mode 0: Stop
Mode 0 brakes the car, giving all pins on L298N high input. This enables the car to make
an abrupt stop.

i. # mode0: stop
1. if command_bit==0:
2. Car.run_(0,0,0,0,0,0,0,0)

Code 31 Mode 0

b. Mode 1: Receiving pwm control from OpenMV
In this mode, the car receives all pwm controls from OpenMV, including pwm values and
the angular velocity directions of each wheel. Basically, two wheels on the same side (i.e.
left or right) are always given the same instructions for simplicity. Seven bits are needed
in this mode, the first for mode switch and the others for car motion. Bits 2 to 4 give
instructions to left wheels. A 2 on bit 2 indicates the left wheels turn forward and a 1 on
this bit indicates backward movement. Bit 3 to 4 gives a pwm as a decimal figure with two
digits, ranging from 0 to 99. The same rule is obeyed in bit 5 to 7 for right wheels.

mode1: receiving PWM from OpenMV
 elif command_bit==1:
 if len(sum)!=7: #if wrong pattern received, move forward
 sum="1220220"
 else:
 left=int(sum[1:4])
 if left>200:
 NlB1=left-200
 NlB2=0
 NlC1=left-200
 NlC2=0
 else:
 NlB2=left-100
 NlB1=0
 NlC2=left-100
 NlC1=0
 right=int(sum[4:7])
 if right>200:
 NrA1=right-200
 NrA2=0
 NrD1=right-200
 NrD2=0
 else:
 NrD2=right-100
 NrD1=0

4 System Integration, Results and Discussion

 83 | 123
TDPS 2021 TEAM 37

 NrA2=right-100
 NrA1=0

 Car.run_(NrA1,NrA2,NlB1,NlB2,NlC1,NlC2,NrD1,NrD2)
Code 32 Mode 1

c. Mode 2: Turn on the spot
In mode 2, the car complete turning instructions of arbitrary angle. This requires a
command message of five bits, in which bit 2 implies whether the turning is clockwise or
counterclockwise, and bit 3 to 5 gives the degree of turning. On entering mode 2, we set
the global variable count to be zero, indicating an original angle is read and recorded from
JY901S. While the turning is not completed, the program would stay in the while loop and
new commands about modes are ignored, if and, during this period.

mode2:turning withour moving along
 elif command_bit==2:
 if len(sum)!=5:
 sum="21000" #if wrong pattern, stay still
 else:
 if int(sum[1:2])==1: #counterclockwise
 turn_angle=int(sum[2:5]) # >0: anticlockwise,

<0: clockwise
 if int(sum[1:2])==2: #clockwise
 turn_angle=-int(sum[2:5])
 count=0
 time.sleep(0.5)
 turn_complete=0
 target_angle=original_angle+turn_angle
 if target_angle<=-180:
 target_angle=target_angle+360
 if target_angle>180:
 target_angle=target_angle-360
 while(turn_complete==0):
 if z_angle<=-90 and z_angle>=-180 and

target_angle<=180 and target_angle>=90:
 delta=z_angle-target_angle+360
 elif z_angle>=90 and z_angle<=180 and

target_angle>=-180 and target_angle<=-90:
 delta=z_angle-target_angle-360
 else:
 delta=z_angle-target_angle
 if z_angle-target_angle>=180:
 delta=-(360-delta)
 if z_angle-target_angle<=-180:

4 System Integration, Results and Discussion

 84 | 123
TDPS 2021 TEAM 37

 delta=-(360+delta)
 # print(delta,z_angle)
 if abs(delta)>=1:
 print(delta,z_angle)
 turn(delta)
 if abs(delta)<1:
 # print(delta)
 turn_complete=1
 # Car.run_(0,0,0,0,0,0,0,0)

 sum="0"
Code 33 Mode 2

d. Mode 3: Turning while moving
Instead of making an accurate turning in place, in this mode, the car may move on and
meanwhile adjust its direction according to the delta angle returned from OpenMV,
characterizing the difference between its current orientation and the target one. The
message for this mode consists of five bits, with one command bit, one bit indicating the
direction of angular velocity of turning and three bits telling the absolute value of the delta
angle.

mode3: move while turning
 elif command_bit==3:
 if len(sum)!=5:
 sum="31000" #if wrong pattern, move forward
 else:
 if int(sum[1:2])==1:
 str_angle=int(sum[2:5])
 elif int(sum[1:2])==2:
 str_angle=-int(sum[2:5])

 Car.straight(40,40,40,40,str_angle)
Code 34 Mode 3

The essence of this mode is the function it calls named straight. In this function, we first
decide whether the angle is valid. If it is too large, we ignore the instruction because in this
mode the car is supposed to move in a relatively straight manner. If the returned angle lies
between an acceptable interval, we adjust the speed of wheels to cater for the degree
expected. The adjustment is based on the angle received. If the absolute value of the angle
is below ten degrees, we make fine adjustments. Otherwise, we adjust one side of wheels
to turn backwards and the other two to turn forward. For example, if we want the car to
turn left, we instruct the right wheels to turn forward and the left ones to turn backward.
In this way, our car can adjust its direction according to the instructions from OpenMV.

def straight(self, pwm_A, pwm_B, pwm_C, pwm_D, sum):
 self.NrA1 = pwm_A #NrA1=NrD1(same speed for wheels on the

4 System Integration, Results and Discussion

 85 | 123
TDPS 2021 TEAM 37

same side)
 self.NlB1 = pwm_B
 self.NlC1 = pwm_C
 self.NrD1 = pwm_D
 step = 10
 wt=0.001
 v_base=40
 if(sum<70 and sum>-70):
 # increment=(sum/abs(sum))*math.exp(sum/2.2)
 increment=sum/2
 # increment=1

 if (sum<=10 and sum>=-10):
 self.NrD1=v_base+increment
 self.NrA1=v_base+increment
 self.NlB1=v_base-increment
 self.NlC1=v_base-increment
 self.NrA2=0
 self.NlB2=0
 self.NlC2=0
 self.NrD2=0
 if sum>10:
 self.NrA1=v_base+increment
 self.NrD1=v_base+increment
 self.NlC2=v_base+increment
 self.NlB2=v_base+increment
 self.NrA2=0
 self.NrD2=0
 self.NlC1=0
 self.NlB1=0
 if sum<-10:
 self.NrA2=v_base-1.5*increment
 self.NrD2=v_base-1.5*increment
 self.NlC1=v_base-1.5*increment
 self.NlB1=v_base-1.5*increment
 self.NrA1=0
 self.NrD1=0
 self.NlC2=0
 self.NlB2=0
 if(sum>70 or sum<-70):
 self.NrA2=0
 self.NlB2=0

4 System Integration, Results and Discussion

 86 | 123
TDPS 2021 TEAM 37

 self.NlC2=0
 self.NrD2=0
 Car_motion.run_(self, self.NrA1,self.NrA2, self.NlB1,

self.NlB2, self.NlC1, self.NlC2, self.NrD1, self.NrD2)
 if abs(sum)>10:
 sleep(0.2)
 else:
 sleep(0.3)
 print(sum,'FL=',self.NlB1-self.NlB2,'FR=',self.NrA1-

self.NrA2,'BL=',self.NlC1-self.NlC2,'BR=',self.NrD1-self.NrD2)
 Car_motion.run_(self, 0, 0, 0, 0, 0, 0, 0, 0)

 sleep(0.5)
Code 35 Function straight

e. Mode 4: Moving in a straight line on pebble ground
In some parts in patio 2, the car is desired to move in a straight line. However, it is difficult
for the car to keep direction on pebble ground, where its wheels may rotate without
touching the ground, making it futile for control over wheel speeds. Thus, we designed a
mode especially for this scenario, in which JY901S is invoked. To enter this mode, the
message from OpenMV requires a mere command bit.

mode4: move along a stright line (patio 2)
 elif command_bit==4 and isInitialize==0:
 turn_angle=0
 count=0 #set another original angle
 time.sleep(0.5)
 a=[31,30,30,31]
 target_angle=s_original_angle+turn_angle
 isInitialize=1
 if target_angle<=-180:
 target_angle=target_angle+360
 if target_angle>180:
 target_angle=target_angle-360

 elif command_bit==4 and isInitialize==1:
 if z_angle<=-90 and z_angle>=-180 and

target_angle<=180 and target_angle>=90:
 delta=z_angle-target_angle+360
 elif z_angle>=90 and z_angle<=180 and target_angle>=-

180 and target_angle<=-90:
 delta=z_angle-target_angle-360
 else:
 delta=z_angle-target_angle

4 System Integration, Results and Discussion

 87 | 123
TDPS 2021 TEAM 37

 if z_angle-target_angle>=180:
 delta=-(360-delta)
 if z_angle-target_angle<=-180:
 delta=-(360+delta)
 # print(delta,z_angle)

 a=Car.stra2(a[0],a[1],a[2],a[3],delta)
Code 36 Mode 4

The function stra2 is called here to fulfill this task. This function adjusts the pwm value
for wheels based on its last values. The code for it is listed below:

def stra2(self, pwm_A, pwm_B, pwm_C, pwm_D, sum):
 self.NrA1 = pwm_A #NrA1=NrD1(same speed for wheels on the

same side)
 self.NlB1 = pwm_B
 self.NlC1 = pwm_C
 self.NrD1 = pwm_D
 self.NrA2=0
 self.NlB2=0
 self.NlC2=0
 self.NrD2=0
 yuzhi=0.1
 increment=abs(sum)
 rang=40#maximum differnece between speeds on two sides
 base=30
 if(sum<-yuzhi):
 self.NrA1=self.NrA1+increment
 self.NrD1=self.NrD1+increment
 self.NlC1=self.NlC1-increment
 self.NlB1=self.NlB1-increment
 if((self.NrA1-self.NlB1)>rang):
 self.NlB1=base-(rang/2)
 self.NlC1=base-(rang/2)
 self.NrA1=base+(rang/2)
 self.NrD1=base+(rang/2)
 if(sum>yuzhi):
 self.NlB1=self.NlB1+increment
 self.NlC1=self.NlC1+increment
 self.NrA1=self.NrA1-increment
 self.NrD1=self.NrD1-increment
 if((self.NlB1-self.NrA1)>rang):
 self.NlB1=base+(rang/2)

4 System Integration, Results and Discussion

 88 | 123
TDPS 2021 TEAM 37

 self.NlC1=base+(rang/2)
 self.NrA1=base-(rang/2)
 self.NrD1=base-(rang/2)
 if(sum<=yuzhi and sum>=-yuzhi):
 pass
 Car_motion.run_(self, self.NrA1,self.NrA2, self.NlB1,

self.NlB2, self.NlC1, self.NlC2, self.NrD1, self.NrD2)
 print(sum,'FL=',self.NlB1-self.NlB2,'FR=',self.NrA1-

self.NrA2,'BL=',self.NlC1-self.NlC2,'BR=',self.NrD1-self.NrD2)
 sleep(0.1)

 return (self.NrA1, self.NlB1, self.NlC1, self.NrD1)
Code 37 Function stra2

f. Mode 5: Moving in a straight line across the bridge
When crossing the bridge, the car needs to follow a straight trace as well. However, our
function stra2 is designed to be sensitive to small degree changes, and the car might
behave like swinging from side to side at times, making it not suitable for the bridge of a
limited width. Mode 5 is designed for this task and performs smooth motion.

mode5: move along a straight line (bridge)
 elif command_bit==5 and isInitialize==0:
 turn_angle=0
 count=0 #set another original angle
 time.sleep(0.5)
 target_angle=s_original_angle+turn_angle
 if target_angle<=-180:
 target_angle=target_angle+360
 if target_angle>180:
 target_angle=target_angle-360
 isInitialize=1
 print(isInitialize)

 elif command_bit==5 and isInitialize==1:
 if z_angle<=-90 and z_angle>=-180 and

target_angle<=180 and target_angle>=90:
 delta=z_angle-target_angle+360
 elif z_angle>=90 and z_angle<=180 and target_angle>=-

180 and target_angle<=-90:
 delta=z_angle-target_angle-360
 else:
 delta=z_angle-target_angle
 if z_angle-target_angle>=180:
 delta=-(360-delta)

4 System Integration, Results and Discussion

 89 | 123
TDPS 2021 TEAM 37

 if z_angle-target_angle<=-180:
 delta=-(360+delta)
 a=Car.stra3(delta)
 global y_angle
print("y_angle:",y_angle)
 if(y_angle>10):
 enableCamera=1
 print("sent enable camera.")

 UART_OpenMV.write(str(enableCamera))
Code 38 Mode 5

One of the main differences between mode 5 and mode 4 is that in mode 5, stm32 returns
a message to turn on the camera and informs OpenMV that it is going down the bridge. In
addition, another function, namely stra3 is called in this mode. This function is not
iterative, ensuring a steady performance of the car.

def stra3(self,delta):
 self.NrA1 = 36 #NrA1=NrD1(same speed for wheels on the

same side)
 self.NlB1 = 35
 self.NlC1 = 35
 self.NrD1 = 36
 step = 10
 wt=0.001
 v_base=35
 sum=delta
 if (sum==0):
 pass
 if(sum>0.1 or sum<-0.1):
 # increment=(sum/abs(sum))*math.exp(sum/2.2)
 increment=40*sum
 self.NrD1=v_base-increment
 self.NrA1=v_base-increment
 self.NlB1=v_base+increment
 self.NlC1=v_base+increment
 # self.NrA2=0
 # self.NlB2=0
 # self.NlC2=0
 # self.NrD2=0
 else:
 pass
 self.NrA2=0
 self.NlB2=0

4 System Integration, Results and Discussion

 90 | 123
TDPS 2021 TEAM 37

 self.NlC2=0
 self.NrD2=0
 if(self.NrA1>50):
 self.NrA1 = 50#NrA1=NrD1(same speed for wheels on

the same side)
 self.NrD1 = 50
 if(self.NrA1<20):
 self.NrA1 = 20#NrA1=NrD1(same speed for wheels on

the same side)
 self.NrD1 = 20
 if(self.NlB1>50):
 self.NlB1 = 50#NrA1=NrD1(same speed for wheels on

the same side)
 self.NlC1 = 50
 if(self.NlB1<20):
 self.NlB1 = 20#NrA1=NrD1(same speed for wheels on

the same side)
 self.NlC1 = 20
 Car_motion.run_(self, self.NrA1,self.NrA2, self.NlB1,

self.NlB2, self.NlC1, self.NlC2, self.NrD1, self.NrD2)
 # sleep(0.2)
 print(sum,'FL=',self.NlB1-self.NlB2,'FR=',self.NrA1-

self.NrA2,'BL=',self.NlC1-self.NlC2,'BR=',self.NrD1-self.NrD2)
Code 39 Function stra3

g. Mode 6: Operating the robotic arm
If OpenMV returns a single ‘6’, the car enters the mode of robotic arm operation. This is
illustrated in detail in the parts of robotic arm. The code for mode 6 is simple, since most
work is finished in the function robotic_arm.releasing(). After the execution of this
function, we automatically set the command bit to 0 so that the car would stop for a while
and wait for new instructions.

elif command_bit==6:
 robotic_arm.releasing()

 sum="0"
Code 40 Mode 6

4.1.2 Result and Discussion

4.1.2.1 Patio1

Tracing Response

4 System Integration, Results and Discussion

 91 | 123
TDPS 2021 TEAM 37

How to make car go straight is an issue that have troubled us for a long time. The key factor of
the task is to ensure the running route be an approximately straight line within tolerate drift
angle as 0.1. It is critical in both patio1 and patio 2.

The first solution we tried was to use the velocity feedback of the wheels to enable the right
and left sides of the wheel the same speed by setting the PID with reasonable parameters. In
other words, it is to walk in a straight line. Based on this, we converted the number of pulses
received by the encoder into velocity as well as added the PID algorithm to achieve the same
speed on both sides.

However, the fact is not what we imagined. Even if we can make the rotation speed on both
sides of the wheel exactly and quickly, due to the unevenness of the ground, the accidental
idling will cause the deviation of the car. Especially on the cobblestone pavement of the second
patio.

Figure 66 Cobblestone pavement

The second attempt was to use a gyroscope to accurately perceive the angle of the current car,
and adjusted the output values of the PWM motors on both sides by analyzing the angle offset.
The simplified version of the logic is as follows: if the angle is greater than 0.1, the car is tilted
to the left, then we will increase the PWM output of the left wheel; if the angle is less than 0.1,
the car is tilted to the right, then we will increase the PWM output of the right wheel. The first
gyroscope we tried was MPU6050, (the code above, the part with the problem). However, due
to the long time required to obtain the speed of this chip, we could not get the offset of the
small angle in time, so we finally gave up this scheme.

The final solution: Since the change of PWM should be related to the change of angle, by
comparing three functional relationships, including linear function, ln function and exponential
function, we found that the exponential function changes little when the angle is small, and the
changes are obviously when the angle is large, This feature satisfies our idea of fine-tuning in
small angles and drastically adjusting in large angles. In addition, we have tried two different
logic methods. We found that adding negative feedback (that is, the current PWM value is the

4 System Integration, Results and Discussion

 92 | 123
TDPS 2021 TEAM 37

last PWM value) and limiting the maximum PWM difference between the two wheels of the
trolley will make the car adjust more quickly and the offset will be smaller when the car goes
straight. The car has outstanding performance on the cobblestone road.

import pyb
import MPU6050
 '''
 input parameters：current enc
 output parameters：current pwm value
'''
 class PID:
 def __init__(self, pwm_range, kp_A, ki_A, kd_A, kp_B, ki_B,
kd_B, kp_C, ki_C, kd_C, kp_D, ki_D, kd_D):
 #pwm_range: maximum pwm value
 #A:B8-B7, front-right
 #B:B6-B5, front-left
 #C:B1-A6, rear-left
 #D:B0-A7, rear-right
 pwm_A = 0 #pwm_A = Nr1-Nr2
 pwm_B = 0
 pwm_C = 0
 pwm_D = 0
 err = 0
 err_A = 0
 err_B = 0
 err_C = 0
 err_D = 0
 last_err_A = 0
 last_err_B = 0
 last_err_C = 0
 last_err_D = 0
 self.pwm_range = pwm_range
 self.kp_A = kp_A
 self.ki_A = ki_A
 self.kd_A = kd_A
 self.kp_B = kp_B
 self.ki_B = ki_B
 self.kd_B = kd_B
 self.kp_C = kp_C
 self.ki_C = ki_C
 self.kd_C = kd_C
 self.kp_D = kp_D

4 System Integration, Results and Discussion

 93 | 123
TDPS 2021 TEAM 37

 self.ki_D = ki_D
 self.kd_D = kd_D
 self.pwm_A = 0
 self.pwm_B = 0
 self.pwm_C = 0
 self.pwm_D = 0
 self.err = err
 self.err_A = err_A
 self.err_B = err_B
 self.err_C = err_C
 self.err_D = err_D
 self.last_err_A = last_err_A
 self.last_err_B = last_err_B
 self.last_err_C = last_err_C
 self.last_err_D = last_err_D

 # increment pid
 def incremental_pid(self, now, target):
 pwm += Kp[e(k) - e(k-1)] + Ki*e(k) + Kd[e(k) - 2e(k-1) +
e(k-2)]

 '''
 err = target - now #now:'count'
 pwm = pwm + self.kp*(err - last_err) + self.ki*err +
self.kd*(err - last_err)
 if (pwm >= self.pwm_range): # limit the amplitude
 pwm = self.pwm_range
 if (pwm <= -self.pwm_range):
 pwm = -self.pwm_range
 last_err = err
 return pwm

 def pid_A(self, now, target):
 self.err_A = target - now
 self.pwm_A = self.pwm_A + self.kp_A * (self.err_A -
self.last_err_A) + self.ki_A*self.err_A + self.kd_A*(self.err_A -
self.last_err_A)
 if (self.pwm_A >= self.pwm_range):
 self.pwm_A = self.pwm_range
 if (self.pwm_A <= -self.pwm_range):
 self.pwm_A = -self.pwm_range
 self.last_err_A = self.err_A

4 System Integration, Results and Discussion

 94 | 123
TDPS 2021 TEAM 37

 # print("pwm_A", self.pwm_A)
 return self.pwm_A

 def pid_B(self, now, target):
 self.err_B = target - now
 self.pwm_B = self.pwm_B + self.kp_B*(self.err_B -
self.last_err_B) + self.ki_B*self.err_B + self.kd_B*(self.err_B -
self.last_err_B)
 if (self.pwm_B >= self.pwm_range):
 self.pwm_B = self.pwm_range
 if (self.pwm_B <= -self.pwm_range):
 self.pwm_B = -self.pwm_range
 self.last_err_B = self.err_B
 return self.pwm_B

 def pid_C(self, now, target):
 self.err_C = target - now
 self.pwm_C = self.pwm_C + self.kp_C*(self.err_C -
self.last_err_C) + self.ki_C*self.err_C + self.kd_C*(self.err_C -
self.last_err_C)
 if (self.pwm_C >= self.pwm_range):
 self.pwm_C = self.pwm_range
 if (self.pwm_C <= -self.pwm_range):
 self.pwm_C = -self.pwm_range
 self.last_err_C = self.err_C
 return self.pwm_C

 def pid_D(self, now, target):
 self.err_D = target - now
 self.pwm_D = self.pwm_D + self.kp_D*(self.err_D -
self.last_err_D) + self.ki_D*self.err_D + self.kd_D*(self.err_D -
self.last_err_D)
 if (self.pwm_D >= self.pwm_range):
 self.pwm_D = self.pwm_range
 if (self.pwm_D <= -self.pwm_range):
 self.pwm_D = -self.pwm_range
 self.last_err_D = self.err_D
 return self.pwm_D

code 41 car dynamic self-adaption direction maintenance

 In order to ensure that the car can patrol the route steadily, we have tried many methods. At
first, we decided to let OpenMV transmit the angle between the central axis and the car to
STM32 through inter-board communication (the distance between the trolley and the center

4 System Integration, Results and Discussion

 95 | 123
TDPS 2021 TEAM 37

line is not transmitted), but the effect is not good: After a good number of trials, it is easy for
the car to deviate from the route it needs to follow.

Next, we tried two straight-line algorithms, the exponential function algorithm with negative
feedback (mode 4) and the linear function algorithm (mode 5). When we call mode4, the
probability of error is small when the car is patrolling the line, but the car twists and turns when
it moves forward, which affects the speed of the car and wastes a lot of time. When we call
mode 5, the car can complete a short distance perfectly, but when it needs to travel a long
distance, it will deviate a lot from the central axis.

After many trials by our team members, we have come up with a relatively rigorous solution:
command OpenMV to transmit an 8-bit command, Bit1 is 1 means that we will use PWM Mode
(continuous control by PID in OpenMV) Bit2-7 directly transfers the PWM value information
to the four wheels, which has achieved good results. Since the exact PWM value makes our
control of the wheels more precise, avoiding the situation that the car greatly deviates from the
route.

Figure 67 the car is patrolling the line while turning

In-Position Turning

In Patio 1, there are two points where each a 90 degree in-position turn is required. One is at
the beacon before the bridge, the other one is right after crossing the bridge.

At first point, once the beacon is detected, Open MV sends signal “22090” to STM32, ordering
Mode 2 (in-position turning) and a clockwise 90 degree turn. Receiving the order, STM32 first
gets an original angle from gyroscope and sets a target angle accordingly. In the turning process,
gyroscope keeps reading current angle for STM32 to make comparison with the target one. We
set the tolerance to be ±1 degree, i.e., the turning process is finished once |current - target|≤ 1.
The second turn is carried out in a similar way.

In field tests, we find that the car often turns over 90 degree and figure out the reason: the area
around turning points is smooth enough for the car to make turns rapidly, so even though the

4 System Integration, Results and Discussion

 96 | 123
TDPS 2021 TEAM 37

gyroscope is real-time and accurate, it still turns over easily due to inertia. To fix such fault, we
set the car to turn at a lower speed when the turning is about to be complete (|current - target|≤
20).

def turn(delta):
 if delta>0: #clockwise
 if delta>20:
 Car.run_(0,50,50,0,50,0,0,50)
 time.sleep(0.4)
 if delta<20:
 Car.run_(0,30,30,0,30,0,0,30)
 time.sleep(0.2)
 Car.run_(0,0,0,0,0,0,0,0)
 time.sleep(0.1)
 if delta<0: #anticlockwise
 if delta<-20:
 Car.run_(50,0,0,50,0,50,50,0)
 time.sleep(0.4)
 if delta>-20:
 Car.run_(30,0,0,30,0,30,30,0)
 time.sleep(0.1)
 Car.run_(0,0,0,0,0,0,0,0)
 time.sleep(0.1)

Code 42 Improved Turning Program

After adopting this solution, the in-position turning orders are always executed perfectly in
Patio 1.

Crossing Bridge

In field tests, we find that there is no problem with climbing up the bridge or running down the
slope, since the wheels of our car have good track adhesion and the 12-Volt motors are powerful
enough. Therefore, we just focus on how to move straight when crossing the bridge.

As there is no line for Open MV to carry out tracing, the car can only depend on the gyroscope
to determine direction, i.e., Mode 4 and Mode 5 are to choose from.

Although Mode 4 stands for being sensitive to deviation, it also means the car would response
in a dramatic way, adding risks for the slopes. As a result, we choose Mode 5. In Mode 5, the
car adjusts direction in a milder way than in Mode 4. Despite possible additive deviation, Mode
5 shows great performance in a short distance, therefore is suitable to be applied in bridge
crossing.

Above all, field tests have witnessed the correctness of our choice.

4 System Integration, Results and Discussion

 97 | 123
TDPS 2021 TEAM 37

Figure 68 Crossing Bridge

4.1.2.2 Patio2

A: Self-adaptive direction control mode

In task 2, dynamic self-adaptive direction control mode is widely implemented in both the
smooth tile surface and the rough cobblestone surface (Figure 69). It successfully makes the
car go straight in two surfaces with quite different friction coefficients. We overcome the
difficulties that the tire is easy to slip on tile surface and the wheel is likely to stuck in
cobblestone.

Figure 69 Running along a straight line in tile surface and cobblestone surface

Compared with fixed PWM value adjustment per second, the dynamic self-adaptive direction
control mode use both exponential functions related to deviation angle

Adjustment=|deviation angle|×e|deviation angle|/2.2

4 System Integration, Results and Discussion

 98 | 123
TDPS 2021 TEAM 37

and negative feedback to get better performance in going straight. The adjustment is relevant
to the magnitude of disturbance, this algorithm first quantizes the influence of the uneven
surface of the ground and the stall of the wheel into the deviation angle mapping to yaw axis
(rotate on car’s up vector)

Based on self-adaptive, the angle adjustment is divided into three stages due to the on-spot test
experience, stable zone, tremor zone, and fluctuation zone. We set the different magnifications
for adjustments in three zones. Moreover, to avoid the circumstance that the wheel stuck on the
pebble, we amplify the PWM output value to the motor in pebble road. On the contrary, the car
runs slowly in the tile surface. The car can automatically distinguish the different roads by
judging the angle fluctuation in pitch axis (rotate on the cross product of the other camera’s up
and direction vectors).

B: Turing:

Turning on the spot plays an indispensable role in performing the tasks 2, which has been
repeatedly implemented and has great influence on the positioning of the car. It is essential
for car to turn on the spot at a target angle precisely. To be specific, turning at an angle
precisely is the foundation for the car to track the desired route, as the car may fail to
approach the desired position without a correct initial direction. We have designed algorithm
to cope with the turning problem.

Our algorithm enables the car to turn at a precise angle with the tolerance of 1 degree and can
revise the turning angle of the car automatically with the use of gyroscope.

We defined delta as the difference angle between the target angle received from openmv and
the current angle provided by the gyroscope, where both the target angle and current angle
are ranging from -180 degree to 180 degree, which determines the turning direction and the
turning angle. To be specific, if delta is greater than 0, the car rotates clockwise and rotates
anticlockwise when delta less than 0. However, we faced with a challenge due to the range of
delta, for instance, the problem occurs when target angle=179°, while current angle=-179°,
the actual result we want is to turn clockwise for 2°, the result will be turning anticlockwise
for 358°. In order to solve this problem, we adjust the range of delta by dividing the turning
in to several conditions, for instance, when:

90°≤target ange≤180° and −180°≤current angle≤−90°
delta=current angle−target angle+360°

With the algorithm, delta is adjusted into the range of -180° to 180°. And the car will
repeatedly revise the angle until the delta angle is less than 1 degree. Moreover, the car will
turn at a higher speed when delta angle is greater than 20°.

def turn(delta):
 if delta>0: #clockwise

4 System Integration, Results and Discussion

 99 | 123
TDPS 2021 TEAM 37

 if delta>20:
 Car.run_(0,50,50,0,50,0,0,50)
 time.sleep(0.4)
 if delta<20:
 Car.run_(0,30,30,0,30,0,0,30)
 time.sleep(0.2)
 Car.run_(0,0,0,0,0,0,0,0)
 time.sleep(0.1)
 if delta<0: #anticlockwise
 if delta<-20:
 Car.run_(50,0,0,50,0,50,50,0)
 time.sleep(0.4)
 if delta>-20:
 Car.run_(30,0,0,30,0,30,30,0)
 time.sleep(0.1)
 Car.run_(0,0,0,0,0,0,0,0)
 time.sleep(0.1)
 if int(sum[1:2])==1: #counterclockwise
 turn_angle=int(sum[2:5]) # >0: anticlockwise,
<0: clockwise
 if int(sum[1:2])==2: #clockwise
 turn_angle=-int(sum[2:5])
 # global z_angle
 # UART_Gyroscope.irq(trigger = UART.IRQ_RXIDLE, handler
= UART_Gyroscope_ISR)
 # global original_angle
 count=0
 time.sleep(0.5)
 turn_complete=0
 target_angle=original_angle+turn_angle
 if target_angle<=-180:
 target_angle=target_angle+360
 if target_angle>180:
 target_angle=target_angle-360
 while(turn_complete==0):
 if z_angle<=-90 and z_angle>=-180 and
target_angle<=180 and target_angle>=90:
 delta=z_angle-target_angle+360
 elif z_angle>=90 and z_angle<=180 and target_angle>=-
180 and target_angle<=-90:
 delta=z_angle-target_angle-360
 else:

4 System Integration, Results and Discussion

 100 | 123
TDPS 2021 TEAM 37

 delta=z_angle-target_angle
 if z_angle-target_angle>=180:
 delta=-(360-delta)
 if z_angle-target_angle<=-180: #
取小于 180的夹角
 delta=-(360+delta)
 # print(delta,z_angle)
 if abs(delta)>=1:
 print(delta,z_angle)
 turn(delta)
 if abs(delta)<1:
 # print(delta)
 turn_complete=1
 # Car.run_(0,0,0,0,0,0,0,0)
 sum="0"
 # UART_Gyroscope.deinit

C: Robotic Arm:

The robotic arm is necessary in task 2 to comply the task of releasing fish food. A two-degree-
of-freedom robotic has been installed, which successfully performed the task in the last
examination. The arm is designed to perform an action of throwing which can cast the fish food
to the target position and then return to the original state in a relatively more sluggish speed.
Besides, the size of the robotic arm is of great importance, the deepest diving down distance is
up to 7cm, the largest arm span is up to 23cm, and the highest lifting distance is up to 15cm.

Figure 70 Size of robotic arm

The two joints of the arm are controlled by two servos (MG90S) respectively, where the
rotation angle of servos can be adjusted by PWM value.

4 System Integration, Results and Discussion

 101 | 123
TDPS 2021 TEAM 37

Figure 71 Working principle of servos

It is noteworthy that the PWM range is 0.25 to 12.5 under the condition that the period of the
servos is 20ms. Based on measurement and trials, we set the PWM values of the two servos
(which are in responsible for the control of right and left arms) to about 12. Moreover, the
robotic arm is controlled by the instructions from OpenMV.

main.py -- put your code here!
from pyb import UART, Pin,Timer
import time
from time import sleep

print("hello world")

A0 = Pin('PA0') #control the left steering gear engine
tim = Timer(2, freq=50)
ch = tim.channel(1, Timer.PWM, pin=A0)

B3 = Pin('PB3')# control the right steering gear engine
tim1 = Timer(2, freq=50)
ch1 = tim.channel(2, Timer.PWM, pin=B3)

ch.pulse_width_percent(6.3)
ch1.pulse_width_percent(8.5)

def releasing():
 i=6.3 #左边
 m=8.5 #右边
 flag=1
 while flag:
 i+=0.1

4 System Integration, Results and Discussion

 102 | 123
TDPS 2021 TEAM 37

 m+=0.1
 ch.pulse_width_percent(i)
 ch1.pulse_width_percent(m)
 if m>=12:
 m=12
 if i>=11.8 and m>=12:
 #print(i)
 #print(m)
 i=11.8
 m=12
 ch.pulse_width_percent(i)
 ch1.pulse_width_percent(m)
 time.sleep(2)
 while i>=6.3 or m>=8.5:
 if i>=6.3:
 i=i-0.1
 if m>=8.5:
 m=m-0.1
 print(i)
 print(m)
 time.sleep(0.3)
 ch.pulse_width_percent(i)
 ch1.pulse_width_percent(m)
 if i<6.3 and m<8.5:
 flag=0

	1 Introduction
	1.1 Background
	1.1.1 Design Tasks Overview
	1.1.2 Team Information
	1.1.3 Technical Background

	1.2 Scope and Limitations

	2 Overall System Design Approach
	3 Subsystem Design and Solutions
	3.1 Car Group: Car Structure Design
	3.1.1 Part1: Design and Construction of Car Structure
	3.1.2 Part2: Wiring between Different Modules

	3.2 Car Group: L298N Driver Module Design
	3.2.1 Introduction to L298
	3.2.2 Driver Module PCB Design
	3.2.3 Software Implementation of Driver Module

	3.3 Car Group: Gyroscope
	3.3.1 The Choice between MPU-6050 and JY901S
	3.3.2 Two Communication Protocols: I2C and UART
	3.3.3 Data Processing
	3.3.4 Comparison between 6-axis Scheme and 9-axis Scheme
	3.3.5 Applications
	3.3.5.1 Application1: turning on the spot
	3.3.5.2 Application2: Send down-bridge signal to OpenMV
	3.3.5.3 Application3: dynamic self-adaption direction maintenance

	3.4 Car Group: Velocity Feedback
	3.5 Car Group: Robotic Arm
	3.5.1 Identify the Requirement and Problem Formulation
	3.5.2 Ideas of Robotic Arm:
	3.5.4 Components and Basic Structure
	3.5.5 Size of the Robotic Arm
	3.5.6 Working Principle of Servo
	3.5.7 Code

	3.6 Car group: Debugging (The Breakdown of STM32 Boards)
	3.6.1 Wrong Design in L298N PCB
	3.6.2 The Drawback of Directly Connecting L298N Module
	3.6.3 Human Error-wrong Wire Connection
	3.6.4 Solution: Adding Optical Coupler Isolation between STM32 and L298N

	3.7 Image Group: Tracing
	3.7.1 Image Processing
	3.7.1.1 Edge Detection
	3.7.1.2 Filters
	3.7.1.3 Segmentation

	3.7.2 Information Utilization
	3.7.2.1 Method A: Deviation Angle
	3.7.2.1 Method B: Horizontal Deviation Distance

	3.7.3 Robustness Improvement of Tracing
	3.7.3.1 Problem 1: Far Distance Vision
	3.7.3.2 Problem 2: Off the Road

	3.8 Image Group: Color Recognition
	3.8.1 Initial Design
	3.8.2 Final Design

	3.9 Image Group: Ultrasonic Sensor
	3.10 Image Group: Clock Module
	3.11 Image Group: HC-12 Wireless Communication
	3.11.1 Module Overview
	3.11.2 Send Message from Microcontroller
	3.11.2 Receive Message

	3.12 Image Group: Beacon Design
	3.12.1 Patio 1 Apriltag Beacon
	3.12.2 Patio 2 Color Beacon

	3.13 Inter-board Communication
	3.13.1 The Protocol
	3.13.2 Coding Scheme

	4 System Integration, Results and Discussion
	4.1 Command Execution System (Car Group)
	4.1.1 System Integration
	4.1.1.1 Hardware
	4.1.1.2 Software: Mode Realization

	4.1.2 Result and Discussion
	4.1.2.1 Patio1
	4.1.2.2 Patio2

	4.2 Decision-Making System (Image Group)
	4.2.1 System Integration
	4.2.1.1 Patio 1

	4.2.1.2 Patio 2
	4.2.2 Result and Discussion of Patio 1
	4.2.2.1 Beacon chosen
	4.2.2.2 Crossing the Bridge and Gate
	4.2.2.3 Algorithm Robustness

	4.2.3 Result and Discussion of Patio 2
	4.2.3.1 Color Recognition
	4.2.3.2 Programme of Go Straight
	4.2.3.3 Ultrasonic Wave Detecting Railing

	5 Conclusion
	Appendix I Timetable and Gantt Chart
	Appendix II Bills of Materials

